188,183 research outputs found

    Onset of unsteady horizontal convection in rectangle tank at Pr=1Pr=1

    Full text link
    The horizontal convection within a rectangle tank is numerically simulated. The flow is found to be unsteady at high Rayleigh numbers. There is a Hopf bifurcation of RaRa from steady solutions to periodic solutions, and the critical Rayleigh number RacRa_c is obtained as Rac=5.5377×108Ra_c=5.5377\times 10^8 for the middle plume forcing at Pr=1Pr=1, which is much larger than the formerly obtained value. Besides, the unstable perturbations are always generated from the central jet, which implies that the onset of instability is due to velocity shear (shear instability) other than thermally dynamics (thermal instability). Finally, Paparella and Young's [J. Fluid Mech. 466 (2002) 205] first hypotheses about the destabilization of the flow is numerically proved, i.e. the middle plume forcing can lead to a destabilization of the flow.Comment: 4pages, 6 figures, extension of Chin. Phys. Lett. 2008, 25(6), in pres

    Binomial coefficients, Catalan numbers and Lucas quotients

    Full text link
    Let pp be an odd prime and let a,ma,m be integers with a>0a>0 and m≢0(modp)m \not\equiv0\pmod p. In this paper we determine k=0pa1(2kk+d)/mk\sum_{k=0}^{p^a-1}\binom{2k}{k+d}/m^k mod p2p^2 for d=0,1d=0,1; for example, k=0pa1(2kk)mk(m24mpa)+(m24mpa1)up(m24mp)(modp2),\sum_{k=0}^{p^a-1}\frac{\binom{2k}k}{m^k}\equiv\left(\frac{m^2-4m}{p^a}\right)+\left(\frac{m^2-4m}{p^{a-1}}\right)u_{p-(\frac{m^2-4m}{p})}\pmod{p^2}, where ()(-) is the Jacobi symbol, and {un}n0\{u_n\}_{n\geqslant0} is the Lucas sequence given by u0=0u_0=0, u1=1u_1=1 and un+1=(m2)unun1u_{n+1}=(m-2)u_n-u_{n-1} for n=1,2,3,n=1,2,3,\ldots. As an application, we determine 0<k<pa,kr(modp1)Ck\sum_{0<k<p^a,\, k\equiv r\pmod{p-1}}C_k modulo p2p^2 for any integer rr, where CkC_k denotes the Catalan number (2kk)/(k+1)\binom{2k}k/(k+1). We also pose some related conjectures.Comment: 24 pages. Correct few typo

    Magnetic properties of a long, thin-walled ferromagnetic nanotube

    Full text link
    We consider magnetic properties of a long, thin-walled ferromagnetic nanotube. We assume that the tube consists of isotropic homogeneous magnet whose spins interact via the exchange energy, the dipole-dipole interaction energy, and also interact with an external field via Zeeman energy. Possible stable states are the parallel state with the magnetization along the axis of the tube, and the vortex state with the magnetization along azimuthal direction. For a given material, which of them has lower energy depends on the value \gamma=R^2d/(L \lambda_x^2), where R is the radius of the tube, d is its thickness, L is its length and \lambda_x is an intrinsic scale of length characterizing the ration of exchange and dipolar interaction. At \gamma<1 the parallel state wins, otherwise the vortex state is stable. A domain wall in the middle of the tube is always energy unfavorable, but it can exist as a metastable structure. Near the ends of a tube magnetized parallel to the axis a half-domain structure transforming gradually the parallel magnetization to a vortex just at the edge of the tube is energy favorable. We also consider the equilibrium magnetization textures in an external magnetic field either parallel or perpendicular to the tube. Finally, magnetic fields produced by a nanotube and an array of tubes is analyzed

    Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering

    Full text link
    We present a detailed temperature dependent Raman light scattering study of optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K), Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting BaFe{2}As{2} single crystals. In all samples we observe a strong continuous narrowing of the Raman-active Fe and As vibrations upon cooling below the spin-density-wave transition Ts. We attribute this effect to the opening of the spin-density-wave gap. The electron-phonon linewidths inferred from these data greatly exceed the predictions of ab-initio density functional calculations without spin polarization, which may imply that local magnetic moments survive well above Ts. A first-order structural transition accompanying the spin-density-wave transition induces discontinuous jumps in the phonon frequencies. These anomalies are increasingly suppressed for higher potassium concentrations. We also observe subtle phonon anomalies at the superconducting transition temperature Tc, with a behavior qualitatively similar to that in the cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio

    The correlation function of galaxy clusters and detection of baryon acoustic oscillations

    Full text link
    We calculate the correlation function of 13,904 galaxy clusters of z \leq 0.4 selected from the cluster catalog of Wen, Han & Liu. The correlation function can be fitted with a power-law model \xi(r)=(r/R_0)^{\gamma} on the scales of 10h^(-1)Mpc \leq r \leq 50h^(-1)Mpc, with a larger correlation length of R_0=18.84\pm0.27 h^(-1)Mpc for clusters with a richness of R \geq 15 and a smaller length of R_0=16.15 \pm 0.13 h^(-1)Mpc for clusters with a richness of R \geq 5. The power law index of \gamma=2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h^(-1)Mpc with a significance of ~ 1.9\sigma. By analyzing the correlation function in the range of 20 h^(-1)Mpc \leq r \leq 200 h^(-1)Mpc, we find the constraints on distance parameters are D_v(0.276)=1077\pm55(1\sigma) Mpc and h=0.73 \pm 0.039 (1\sigma), which are consistent with the WMAP 7-year cosmology. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density \Omega_m h^2=0.093\pm0.0077 (1\sigma), which deviates from the WMAP 7-year result by more than 3 \sigma. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.Comment: 7 pages, 10 figures, accepted for publication in Ap
    corecore