56 research outputs found

    Linking drought indices to impacts in the Liaoning province of China

    Get PDF
    Drought is an inherent meteorological characteristic of any given region, but is particularly important in China due to its monsoon climate and the “three ladder” landform system. The Chinese government has constructed large-scale water conservation projects since 1949, and developed drought and water scarcity relief frameworks. However, drought still causes huge impacts on water supply, environment and agriculture. China has, therefore, created specialized agencies for drought management called Flood Control and Drought Relief Headquarters, which include four different levels: state, provincial, municipal and county. The impact datasets they collect provide an effective resource for drought vulnerability assessment, and provide validation options for hydro-meteorological indices used in risk assessment and drought monitoring. In this study, we use the statistical drought impact data collected by the Liaoning province Drought Relief Headquarter and meteorological drought indices (Standardized Precipitation Index, SPI and Standard Precipitation Evaporation Index, SPEI) to explore a potential relationship between drought impacts and these indices. The results show that SPI-24 and SPEI-24 are highly correlated to the populations that have difficulties in obtaining drinking water in four out of the six cities studied. Three impacts related to reservoirs and the availability of drinking water for humans and livestock exhibit strong correlations with SPI and SPEI of different accumulated periods. Results reveal that meteorological indices used for drought monitoring and early warning in China can be effectively linked to drought impacts. Further work is exploring how this information can be used to optimize drought monitoring and risk assessment in the whole Liaoning province and elsewhere in China

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Trans-level multi-scale simulation of porous catalytic systems: Bridging reaction kinetics and reactor performance

    No full text
    Multi-scale porous structures inside and/or between the catalyst pellets or particles are found in many chemical processes, where strong coupling of reaction and transport results in complex apparent reaction kinetics influ-ential to the reactor performance. Traditional continuum-based porous media models and simulation methods can hardly describe such structures and their scale effects faithfully. A trans-level multi-scale discrete compu-tational framework is hence proposed to address this complexity and implemented for an olefin catalytic cracking (OCC) process. The apparent reaction kinetics at the REV (representative elementary volume) scale is obtained by hard-sphere pseudo-particle modeling (HS-PPM), and coupled with computational fluid dynamics / discrete element method (CFD-DEM) for the reactor-level hydrodynamics via a one-dimensional (1D) finite difference scheme for particle-level diffusion. The mesoscales of the REVs and the flow networks between the particles are thus covered by the framework, which are previously described by simple average quantities in the continuum methods. The reactant conversion rate and target product selectivity obtained agree well with experimental results, while a continuum approach may give significantly different and unreasonable results. The multi-scale method is, therefore, demonstrated to be necessary and effective for bridging the intrinsic reaction kinetics with the performance of porous catalytic reactors

    Trans-level multi-scale simulation of porous catalytic systems: Bridging reaction kinetics and reactor performance

    No full text
    Multi-scale porous structures inside and/or between the catalyst pellets or particles are found in many chemical processes, where strong coupling of reaction and transport results in complex apparent reaction kinetics influ-ential to the reactor performance. Traditional continuum-based porous media models and simulation methods can hardly describe such structures and their scale effects faithfully. A trans-level multi-scale discrete compu-tational framework is hence proposed to address this complexity and implemented for an olefin catalytic cracking (OCC) process. The apparent reaction kinetics at the REV (representative elementary volume) scale is obtained by hard-sphere pseudo-particle modeling (HS-PPM), and coupled with computational fluid dynamics / discrete element method (CFD-DEM) for the reactor-level hydrodynamics via a one-dimensional (1D) finite difference scheme for particle-level diffusion. The mesoscales of the REVs and the flow networks between the particles are thus covered by the framework, which are previously described by simple average quantities in the continuum methods. The reactant conversion rate and target product selectivity obtained agree well with experimental results, while a continuum approach may give significantly different and unreasonable results. The multi-scale method is, therefore, demonstrated to be necessary and effective for bridging the intrinsic reaction kinetics with the performance of porous catalytic reactors

    Wear and corrosion resistance of Al1.2CoCrFeNiScx high entropy alloys with scandium addition

    No full text
    The present study focuses on investigating the microstructure, hardness, wear, and corrosion resistance of Al1.2CoCrFeNiScx high entropy alloys, where the Sc content (x) varies between 0, 0.1, 0.2, and 0.3. The results indicate that the addition of Sc promotes the formation of the FCC phase and improves the hardness and wear resistance, but reduces the corrosion resistance of the alloy. The alloy's evolution can be observed as a transition from a single BCC phase to a combination of Fe, Cr-rich BCC phase, Al, Co, Ni-rich BCC phase, and Ni, Sc-rich FCC phase. As the Sc content increases from 0 to 0.3, the hardness increases from 438 HV to 581 HV, representing a 32.6 % increment. This increase can be mainly attributed to grain size strengthening and solid solution strengthening. Additionally, the average friction coefficient experiences a notable reduction from 0.999 to 0.574, indicating a 42.5 % decrease. With respect to wear resistance, the Al1.2CoCrFeNiSc0.3 alloy exhibits superior performance, demonstrated by its lower friction coefficient, reduced wear rate, and smaller volume, width and depth of wear marks. Furthermore, the addition of Sc to the Al1.2CoCrFeNiScx alloys leads to an overall decrease in corrosion potential, accompanied by an increase in corrosion current density, suggesting that Sc has a detrimental effect on the corrosion resistance of the alloy. Moreover, the Al1.2CoCrFeNi alloy displays pitting corrosion, while the Al1.2CoCrFeNiScx alloys demonstrate intercrystalline corrosion, which preferentially occurs on the Ni, Sc-rich phase due to the high electrochemical activity and low equivalent chemical potential

    Logging identification for the Lower Cambrian Niutitang shale reservoir in the Upper Yangtze region, China: A case study of the Cengong block, Guizhou Province

    Get PDF
    Currently, China has achieved a breakthrough in the Lower Silurian Longmaxi shale in Sichuan Basin and its surrounding areas. Compared to the Longmaxi shale, the Lower Cambrian Niutitang shale, which has a greater deposition thickness and wider distribution area, is another significant stratum for China's shale gas. Geophysical well logging is one of the most significant methods used for identification and evaluation of shale gas reservoirs throughout the process of shale gas exploration and development. In this paper, the logging response of the Niutitang shale is summarized to “four high and four low”, this was determined through a comparative analysis of three shale gas wells in the Cen'gong block. The Geochemical logging (GEM) data shows that as the depth goes deeper the content of Si (quartz) increases and the content of Al, Fe, K (Potassium), and Clay minerals decreases. In addition, the Niutitang shale mainly has the feature of a single peak or two continuous peaks in T2 spectrum on the nuclear magnetic resonance (NMR) logging response. This has a longer T2 time and greater amplitude than normal shales. The logging response of various lithology and preservation is summarized by overlapping and a cross-plot analysis with the spectral gamma-ray, resistivity, density, acoustic, and compensated neutron logging data, which are sensitive to organic-rich shales. Moreover, the resistivity and acoustic logging data are sensitive to gas content, fluid properties, and preservation conditions, which can be used as indicators of shale gas content and preservation
    • …
    corecore