94 research outputs found

    CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog Evaluation

    Full text link
    Practical dialog systems need to deal with various knowledge sources, noisy user expressions, and the shortage of annotated data. To better solve the above problems, we propose CGoDial, new challenging and comprehensive Chinese benchmark for multi-domain Goal-oriented Dialog evaluation. It contains 96,763 dialog sessions and 574,949 dialog turns totally, covering three datasets with different knowledge sources: 1) a slot-based dialog (SBD) dataset with table-formed knowledge, 2) a flow-based dialog (FBD) dataset with tree-formed knowledge, and a retrieval-based dialog (RBD) dataset with candidate-formed knowledge. To bridge the gap between academic benchmarks and spoken dialog scenarios, we either collect data from real conversations or add spoken features to existing datasets via crowd-sourcing. The proposed experimental settings include the combinations of training with either the entire training set or a few-shot training set, and testing with either the standard test set or a hard test subset, which can assess model capabilities in terms of general prediction, fast adaptability and reliable robustness.Comment: EMNLP 202

    Partial femoral head replacement: a new innovative hip-preserving approach for treating osteonecrosis of the femoral head and its finite element analysis

    Get PDF
    Purpose: Controversy remains regarding the optimal treatment for stage III Osteonecrosis of the femoral head (ONFH). This study presents, for the first time, the precise treatment of stage III ONFH using the “substitute the beam for a pillar” technique and performs a comparative finite element analysis with other hip-preserving procedures.Methods: A formalin-preserved femur of male cadavers was selected to obtain the CT scan data of femur. The proximal femur model was reconstructed and assembled using Mimics 20.0, Geomagic, and UG-NX 12.0 software with four different implant types: simple core decompression, fibula implantation, porous tantalum rod implantation, and partial replacement prosthesis. The finite element simulations were conducted to simulate the normal walking gait, and the stress distribution and displacement data of the femur and the implant model were obtained.Results: The peak von Mises stress of the femoral head and proximal femur in the partial replacement of the femoral head (PRFH) group were 22.8 MPa and 37.4 MPa, respectively, which were 3.1%–38.6% and 12.8%–37.4% lower than those of the other three surgical methods.Conclusion: The PRFH group exhibits better mechanical performance, reducing stress and displacement in the ONFH area, thus maintaining femoral head stability. Among the four hip-preserving approaches, from a biomechanical perspective, PRFH offers a new option for treating ONFH

    Microbial community structure characteristics among different karst aquifer systems, and its potential role in modifying hydraulic properties of karst aquifers

    Get PDF
    Little is known about how microbial activity affects the hydraulic properties of karst aquifers. To explore the potential impacts of microbial activity on the hydraulic properties of karst aquifers, microbiological analysis, heat tracer, isotope (dissolved inorganic carbon isotope, δ13CDIC) and aqueous geochemical analyses were conducted at six monitoring wells in Northern Guangdong Province, China. Greater hydraulic conductivity corresponded to a low temperature gradient to an extent; the temperature gradient in karst groundwater aquifers can reflect the degree of dissolution. Higher HCO3− concentrations coupled with lower d-excess and pH values at B2 and B6 reflect potential microbial activity (e.g., Sulfuricurvum kujiense) causing carbonate dissolution. Microbial activity or the input of anthropogenic acids, as evidenced by significantly more positive δ13CDIC values, potentially affect carbonate dissolution in deep karst aquifers, which eventually alters hydraulic properties of karst aquifer. However, more direct evidence is needed to quantify the effects of microbial activity on carbonate dissolution in karst aquifers

    A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response

    Get PDF
    Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers1–4. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy1,3. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors5–9, has not been fully explored. Here we use genetically engineered mouse models to conduct a ‘co-clinical’ trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244)10 increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors6,9,11,12, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies

    Stochastic-Based Logic Circuit Synthesis And Implementation Through Large-Fanin Threshold Logic With Magnetic Tunneling Junctions

    No full text
    The logic design framework based on Threshold Logic Gate (TLG), combined with emerging spintronic device technology, can achieve ultra-high-performance computing circuits. However, large-fanin threshold logic gates with emerging devices often lead to reduced variation tolerance for memristance, therefore resulting in a so-called fan-in restriction problem. This limitation prevents both large threshold logic nodes and further reduction of logic depth, both of which are critical to achieving high circuit performance. In this paper, we propose a novel stochastic-based design methodology for large-fanin threshold logic gates and two specially designed CAD algorithms to calculate probabilistic weights and threshold values. These techniques allow us to design and implement efficient and robust logic circuits with very large fanin and very shallow logic depths. Our simulation results have shown that, for seven ISCAS-85 benchmark circuits, on average, the energy consumption and delay performance can be improved by about 50% and 30% when comparing our stochastic-based design with a deterministic memristor-based threshold logic design. In addition, for the same set of benchmark circuits, our stochastic-based spintronic circuits can be more than 100x more energy efficient than the conventional CMOS-based FPGA

    Metalloproteomics for Unveiling the Mechanism of Action of Metallodrugs

    No full text
    corecore