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Abstract 

Understanding the transfer process of polycyclic aromatic hydrocarbons (PAHs) in the karst 

terrain is of great importance to their ecological risk assessments, however, the impact of the 

vertical transfer of the soil PAHs on the underground water is largely unknown in the karst 

system. Here, the vertical distribution and the seasonal variation of 16 PAHs in the soils and 

the water of 4 epikarst spring catchments in Southwest China were investigated. The total 

concentration of the PAHs ranged within 61-3285 ng g_1 in the soils, and 341-4969 ng L_1 in 

the spring water. The vertical distribution of the PAHs in soils varied with ring numbers and 

altitude of the catchment. PAHs concentrations were linearly related with the total organic 

carbon (TOC) at different depths in the catchments 563-783m above the sea level (A.S.L.). 

However, no correlation with TOC was observed in the catchment of a high altitude (2090 m 

A.S.L.), because the large water flux led to the fast migration of the 2-3 rings PAHs in soils. 

The PAHs in soils and springs were mainly derived from the combustion of grass/wood/coal, 

closely related with the primary fossil fuels used in this area. This study demonstrate that the 

groundwater was heavily polluted by PAHs in the karst terrains of Southwest China, due to 

the vertical transfer of PAHs from the surface soils, and effective protection was urgently 

needed. 

 



1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) have attracted scientific and public concerns for 

decades because of high ecological risks (Li et al., 2005; Chrysikou and Samara, 2009; Chen 

et al., 2011). The U.S. Environmental Protection Agency (USEPA) classified 16 PAHs as 

priority pollutants, among which 7 were potential carcinogens to humans (Ball and 

Truskewycz, 2013). The incomplete combustion of fossil fuels and biomass materials is the 

main anthropogenic source of PAHs in the environment. Once released into soils or 

groundwater, PAHs degrade slowly and show environmental persistence (Zhang et al., 2006; 

Schwarz et al., 2011), and thus may cause long-term exposure risks to terrestrial or aquatic 

organisms (Ball and Truskewycz, 2013). 

Soils act as the major reservoir of PAHs due to the strong sorption property and high holding 

capacity (Bogan and Sullivan, 2003; Li et al., 2010). The vertical distribution of PAHs in soil 

is subjected to various processes (He et al., 2009), including the diffusion in air and water 

phases, advection via percolating water, vertical transfer via macropores, and chemical 

degradation (Heemken et al., 2000). These processes are influenced by the interaction of 

PAHs with soil organic matters (SOM). Due to the low degradability and high 

hydrophobicity, most of the PAHs can stay in SOM in the surface layer for many years 

(Chefetz et al., 2000; Ping et al., 2007) and only a small portion enters into the subsoil with 

the leaching of dissolved organic matters (DOM) and colloids (Cousins et al., 1999). 

However, the vertical distribution pattern of the PAHs may be significantly different in the 

karst soils, because of the presence of the thin surface layer soils and the enormous 

interconnected fissures in karst system, which means the poor filtration and prepurification 

for pollutants (Yuan, 2000). Thus, the PAHs tend to move down faster in the karst soils than 

in other types of soils, and cause unanticipated pollution of the karst groundwater. However, 

karst groundwater is an important source, which supplies approximate 25% of the world 

population (Ford and Williams, 2007). Nevertheless, some karst systems can effectively 

retain PAHs in the soil, for example in a south German karst system (Schwarz et al., 2011), 

and their risks to the underground water were largely reduced. The karst Tiankeng system is a 

trap for PAHs, especially for high molecular weight PAHs (Oramah et al., 2008; Kong et al., 

2015), and the knowledge on the contamination characteristics of PAHs in this system is of 

great significance for understanding their ecological and environmental risks. 

Karst environments cover over 30% of Chinese land areas (Yuan et al., 1994). 

Concentrations, distribution, and sources of PAHs in topsoil, suspended solids, underground 

water, and sediments have been studied in two karst systems, Laolongdong (Lan et al., 2016) 

and Guozhuang (Shao et al., 2014) in China. However, to the best of our knowledge, 

fewstudies have focused on the impact of soil PAHs on the groundwater in karst terrains. 

Here, we made efforts to improve the understanding on the pattern of the vertical migration of 

PAHs in the karst soils and their influence on the groundwater, taking the Nanchuan karst 

terrain, Southwest China, as an example. The objectives of this study were: (1) to reveal the 

factors controlling the vertical migration of PAHs in the karst soils; and (2) to analyze the 

response of epikarst spring water (the outcrop of karst groundwater) to the PAHs pollution in 

overlying soils. 

2. Materials and methods 
2.1. Study areas 

The Nanchuan karst terrain is located in Chongqing Municipality, Southwest China (Fig. 1). 

It is primarily subtropical monsoonal climate with a annual mean precipitation of 1185mm 

and mean air temperature of 16 _C. The rainy season starts from May to October, while the 

dry season lasts from November to April. The study area is located in the northwest of the 



Dalou Mountain, where allows the difference of the large altitude of the sampling area, as the 

altitude may influence the migration and the distribution of PAHs (Liu et al., 2005). Four 

epikarst spring catchments were selected as the study sites (Table 1), including Hougou (HG), 

Lanhuagou (LHG), Baishuwan (BSW), and Shuifang (SF) which are 563, 736, 783 and 2090 

m A.S.L., respectively, ranging from lowland to mountainous areas. 

2.2. Sample collection 

2.2.1. Soil samples 

Soil samples were collected from five sites (S1~ S5) (Fig. 1 and Table 1) in October 2010. 

Sites S1, S2 and S5 were located at the HG, BSW and SF epikarst spring catchments, 

respectively. Sites S3 and S4 were located at the Masson pine forest land and a rice field, 

respectively, at the LHG epikarst spring catchment. At each site, three soil profiles were 

collected and divided based on the depth measured from the surface of the profiles with a 

ruler. The surface soil sample was taken from 0 to 2 cm in depth. Then, samples were 

collected each 10 cm from the top of the profile. At HG and BSW, the deepest soil samples 

were collected at 60 and 80 cm due to different depth of bedrocks, respectively. Soil profiles 

collected at SF and LHG (S3, S4 and S5 sites) were over 100 cm. The soil samples from the 

same depth of the three profiles were mixed homogeneously. The concentrations reported for 

PAHs represent an average level of each sampling site.  

For each sample, 200 g soils were gathered in glass bottles with airtight caps using a solvent-

rinsed stainless steel spatula, and sealed. Loose decayed litters were removed before 

sampling. Pine litters collected at S2 and S3 sites were treated separately and analyzed for 

concentrations of the total 16 PAHs (∑PAHs). All samples were transferred to the lab as soon 

as possible and stored at -26 oC environment until analyzed. 



 

Fig. 1. Map of the sampling sites in Chongqing, Southwest China. 

 

Table 1 Description of sampling sites. 

 

 

 

2.2.2. Water samples 

The spring water was collected monthly from October 2010 to October 2011 with pre-cleaned 

1.25 L brown glass containers with airtight caps. The samples were stored at 4 oC, and 

analyzed within three days. 

2.3. Chemicals and reagents 

The 16 priority PAHs monitored in this study included: naphthalene (Nap), acenaphthylene 

(Acy), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), 

fluoranthene (Fla), pyrene (Pyr), chrysene (Chry), benzo(a)anthracene (BaA), benzo(k) 

fluoranthene (BkF), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), 

dibenzo(a,h)anthracene (DaA), and indeno(1,2,3-cd)pyrene (InP). A mixed stock standard of 

the 16 PAHs was purchased from Dr. Ehrenstorfer GmbH Inc., Germany. A deuterated PAHs 

surrogate standard (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, 

perylene-d12), and a PAHs internal standard (hexamehylbenzene) were purchased from the 

Supelco, USA. Working standard solutions containing PAHs and deuterated PAHs mixtures 



were prepared by diluting the stock solutions in n-hexane. All solutions were stored at -26 oC 

until use. All solvents used for the extraction and cleanup procedures were HPLC grade and 

obtained from Fisher Scientific (Fair Lawn, NJ, USA). Deionized water was produced by a 

Milli-Q system (Simplicity, Millipore Co, Molsheim, France). Glass fiber filters were heated 

at 450 oC for 4 h and anhydrous sodium sulfate (Na2SO4) were heated at 550 oC for 8 h to 

remove organic residuals. 

2.4. Sample treatment 

Soil samples were freeze-dried and meshed. Each sample (80 mesh, 10 g) mixed thoroughly 

with an equal amount of anhydrous Na2SO4 and 2 g activated copper powder was extracted by 

an accelerated solvent extractor (ASE 350) (Lu et al., 2012). Samples and blanks were spiked 

with a recovery standard solution containing 5 deuterated PAH congeners. All samples were 

extracted with n-hexane/dichloromethane (DCM) (1:1, V/V). The cells were filled with 

solvent, pressurized to 1500 psi, and heated to 125 oC within 6 min. Pressure and heat were 

held for 5 min (static extraction), followed by rinsing with more solvent (60% of cell volume) 

and purging with N2 for 90 s. 

Water samples (1.0 L) were filtered through 0.7 mm glass fiber filter membranes under 

vacuum. The filtrates were added with a measured volume of a surrogate standard mixture 

containing 5 deuterated PAH congeners, and then were extracted using an automatic solid-

phase extraction system (SPE-DEX 4790). Before loading samples, the disk (C18) was first 

conditioned with ethyl acetate and methanol to remove air and leach impurity, respectively, 

and then with ultrapure water to equilibrate the phase. A water sample was then loaded. 

Afterwards, the disk was air-dried for 10 min to remove the residual water. The disks were 

eluted by acetone and DCM. The effluents were collected into a 50mL pearshaped flask. 

The effluents were dried with anhydrous granular Na2SO4, and concentrated to approximately 

2 mL. The concentrates were purified by aluminum oxides and silica gel column 

chromatography. The cartridge was then eluted with 15 mL n-hexane/DCM (3:2, v/v) to 

obtain PAHs. Effluents were transferred into double-layered silicone- Teflon septum vials and 

further concentrated to 0.2 mL under the gentle steam of pure nitrogen gas. 

2.5. Instrumental analysis 

PAHs were analyzed using an Agilent 7890A gas chromatograph equipped with a 5975C 

mass selective detector and a HP-5MS capillary column (30 m, 0.25mm i.d., 0.25 mm film 

thickness). High purity (99.999%) helium was used as the carrier gas. Temperatures of the 

injector, the quadrupole, the ion source and the transfer line were set at 290, 150, 230 and 290 
oC, respectively. The oven temperature was maintained at 60 _C for 1 min, then boosted to 

160 oC at 10oC min_1, and finally increased to 290 oC at 8 oC min_1, and maintained for 10 

min. The quantification of samples was performed by a seven-point calibration curve (R2 = 

0.999-0.9999.) for each individual component. 

2.6. Quality control and quality assurance 

Laboratory quality control procedures included the analysis of method blanks (solvent), 

spiked blanks (standards spiked into solvent), matrix spikes/matrix spike duplicates, and 

sample duplicates. No interference was observed in the blanks. The stability and responses of 

the instrument were checked by using the NIST (2008) standard solution (SRM No 1647c). 

The instrument was calibrated every day with calibration standards. The duplicate analysis of 

selected specimens showed a coefficient of variation lower than 15%. Recoveries for 

surrogate standards were 70 ± 5%, 80 ± 5.6%, 92 ± 7.5%, 95 ± 12%, 96 ± 8.5% for 

naphthalene-d8, acenaphthened10, phenanthrene-d10, for chrysene-d12, and perylene-d12, 

respectively. Limit of detection of 10 g solid samples averaged 0.5-3.1 ng/g dry weights and 

varied from 0.2 to 1.5 ng/L for the 1 L water samples. 



2.7. Soil characterization 

The soils were characterized by conventional standard procedures: the soil organic carbon 

was measured by total organic carbon (TOC) analyzer (JENA 3100 TOC meter). The pH was 

determined by dissolving the soils in 1M KCl (soil: solution ratio= 1:2.5) and by 

potentiometric glass electrodes. Soil water contents were defined as the mass difference 

before and after oven drying at 110 _C. Clay contents were analyzed by laser particle diameter 

analyzer (Mastersizer 3000). 

2.8. Statistics analysis 

Multiple regression and Pearson correlation analysis was performed using the SPSS 13 

statistical software package (SPSS Inc., Chicago, IL). The significance level was set at p < 

0.05. 

3. Results and discussion 
3.1. Vertical distribution and compositions of PAHs in soils 

All the 16 PAHs were detected at each sampling site. The concentrations varied from 161 to 

3285 ng g_1, with a mean value of 987 ng g_1. The concentrations in the surface horizon 

ranged from 806 ng g_1 at S4 to 3101 ng g_1 at S1. Vertical distribution profiles for ∑PAHs 

followed three patterns (Fig. 2): (1) Sites S1and S4 were significantly influenced by tillage 

patterns or human activities (Table 1). At the two sites, the PAHs concentrations reached a 

peak at 10 cm. At S1, the concentration dropped rapidly to a minimum at 40 cm. At S4, a 

second peak (687 ng g_1) appeared at 50 cm, and then the concentration dropped rapidly; (2) 

S2 and S3 collected from the Masson pine forest land showed a similar pattern along the soil 

genetic horizons. PAHs mostly appeared in the surface layer. The concentration decreased 

sharply at 10 cm, and then varied slightly; (3) At S5, the peak concentration (2575 ng g_1) did 

not appear until 40 cm, followed by a sharp decrease with a minimum occurring at 60 cm. 

The vegetation cover was inferred as the most important factor influencing the concentration 

of PAHs in the upper layer soils. The peak concentrations of PAHs appeared in the top 0-2 

cm soil layer at sites S2 and S3, because pine litters rich in PAHs (∑PAHs of pine litters: 

2813 ng g_1 at S2 and 3299 ng g_1 at S3) continuously released the pollutants to the soils, and 

the thick Masson pine litter layers protected PAHs from photodegradation and evaporation 

(Cousins et al., 1999). At other sites, for example S1 and S4 (without the litter layer on the 

top layer), PAHs in the top layer were sensitive to photodegradation or evaporation without 

the protection of the litter layer (Tian et al., 2008). 

The compacted horizon played an important role in slowing down the transport of PAHs to 

sublayer soils at S2 and S3, resulting in most PAHs being retained in the top layers (He et al., 

2009). At S1 and S4, the soils were much less compacted due to human activities, thus 

allowing fast downward transport of PAHs. Tillage activities and irrigation further facilitated 

the downward transport of PAHs. This was typical at S4, where the second concentration 

peak appeared at 50 cm, because paddy soils were irrigated, soaked, and drained for about 6 

months each year, leading to a marked leaching of PAHs. 

Generally, the concentration of PAHs decreased along the depth due to low mobility (Wang et 

al., 2001; Li et al., 2010). As observed at S1~ S4, the concentration of PAHs in the surface 0-
10 cm soils was much higher than that in deep soils (Fig. 2), because the input of PAHs to 

surface soilswas faster than the downward transport (He et al., 2009). But at S5, PAHs in the 

0-10 cm layer was much less than that in the 30-50 cm layer (Fig. 2), meaning that the 

downward transport of PAHs was fast (He et al., 2009). This was not only attributed to the 

loose soils, but also to a high percentage of low molecular weight PAHs at S5 (Fig. 2), 



indicating that the composition of PAHs may be one of key factors influencing the vertical 

distribution. 

The mean percentages of 4 and 5-6 rings PAHs declined with the increase of the altitude, 

while 2-3 rings PAHs showed opposite trend (Fig. 2). Similar trends were found in the study 

of Liu et al. (2005). The percentage of 4 and 5-6 rings PAHs at S1 (563mA.S.L.) ranged 

within 44-70%, of which the mean value was 62%. At S5 (2090mA.S.L.), the mean 

percentage was 4.9%. At S4 and S5, 2-3 rings PAHs contributed to 81% and 95% (mean 

value) of the ∑PAHs for different layers, respectively, while at S1, the maximum percentage 

of 2-3 rings PAHs was less than 55% (at 40 cm). At S2 (736mA.S.L.) and S3 (783mA.S.L.), 

although 2-3 rings PAHs were dominated for all layers except for the top layer (<40%), the 

mean contribution (81 and 77%) was lower than that at S5. The typical altitude-dependent 

distribution of PAHs can be expected, as low molecular weight PAHs (2-3 rings) are easier to 

migrate to higher altitudes than high molecular weight PAHs (4, 5-6 rings) (Perugini et al., 

2007). It is interesting that the percentage of 2-3 rings PAHs was remarkably high at different 

depths at S5 (Fig. 2). This was attributed to the low average local temperature (8 oC) 

beneficial to the deposition of the gaseous PAHs (2-3 rings), and to the loose soils allowing 

fast downward transport of the PAHs (He et al., 2009; Ma and Harrad, 2015). 

 





 

Fig. 2. Vertical profiles of total PAHs concentration (ng g-1), isometric ratios and 

compositions in different soil profile. (Ant/(Ant + Phe) < 0.10 indicates petroleum, and >0.10 

indicates combustion; BaA/(BaA + Chry) < 0.4 indicates petroleum source, > 0.35 indicates 

combustion source, and 0.2 < BaA/(BaA + Chry) < 0.35 indicates mixed sources; Fla/(Fla + 

Pyr) < 0.4 indicates petroleum source, > 0.50 indicates grass/wood/coal combustion source, 

and 0.4 < Fla/(Fla + Pyr) < 0.5 indicates petroleum combustion source; InP/(InP + BgP) < 0.2 

indicates petroleum source, > 0.50 indicates grass/wood/coal combustion source, and 0.2 < 

InP/(InP + BgP) < 0.5 indicates petroleum combustion (Yunker et al., 2002; Ohura et al., 

2015). 

 

3.2. Variation and composition of PAHs in spring water 

Almost all the 16 PAHs were detected in each month in each epikarst spring (Table 2). Nap, 

Ace, Acy, Flu and Phe were the most abundant PAHs in all epikarst springs, contributing to 

47-98% of the ∑PAHs. The mean concentrations of  ∑PAHs and 7 carcinogenic PAHs 

( ∑PAHscarc) were 1668, 178 ng L_1 at SF, 2135, 168 ng L_1 at HG, 1608, 226 ng L_1 at 

LHG, and 1798, 332 ng L_1 at BSW, respectively (Table 2). The mean concentration of 

∑PAHs was the highest at HG, followed by BSW, SF, and LHG, while the order for  

∑PAHscarc was BSW > LHG > SF > HG. As an individual PAH, Flu exhibited the highest 

average concentration, 627 ng L_1 at HG. Comparing with other groundwater system, the 

levels of PAHs in this study area are much higher than those in reclaimed wastewater 

irrigation area (1943 km2, Northern China) (139.1-483.7 ng L_1, mean value 234.5 ng L_1) (Li 

et al., 2012), seepage water (165 km2, Germany) (2-371 ng L_1) (Schwarz et al., 2011), and 

Yellow River Delta (2200 km2, Northern China) (8.51-402.84 ng L_1, mean value 54.64 ng 

L_1) (Li and Li, 2017), but were lower than that in Taihu plain (34,475 km2, Southern China) 

(4e32,449 ng L_1, mean value 4420 ng L_1) (Cui et al., 2008) and Guozhuang karst water 



system (5600 km2, China) (2137-9037 ng L-1, mean value 5020 ng L-1) (Shao et al., 2014). 

This indicated that the groundwater in this study was contaminated with PAHs. As the 

epikarst spring water was the outcrop of karst groundwater, the high concentration and 

detection frequency of PAHs in the epikarst springwater implied that the thin soil layers had 

already lost the protective function for the groundwater. 

 ∑PAHs and  ∑PAHscarc of the 4 springs exhibited different seasonal variations (Fig. 3). At 

SF and HG, the concentration of ∑PAHs fluctuated greatly during the dry season from 

November 2010 to April 2011, and was relatively stable during the rainy season from May 

2011 to September 2011. While at LHG and BSW, the seasonal variation of  ∑PAHs was 

completely opposite. At SF and HG, the average concentration of  ∑PAHs during the dry 

season (2066 and 2823 ng L_1, respectively) was much higher than that during the rainy 

season (1440 and 797 ng L-1, respectively). At LHG, the average concentrations of  ∑PAHs 

during the rainy season (1619 ng L_1) and the dry season (1570 ng L_1) were close. A possible 

reason was that rainfalls promoted soil permeability during the rainy season, and allowed 

PAHs in soils to be dissolved and migrated into groundwater, i.e. the dissolution effect (Yang 

et al., 2012). On the contrary, the intensive rainfalls can shorten the residence-time of water in 

the soils by activating the drainage system, and thus diluted PAHs in the spring water, i.e. the 

dilution effect (Yang et al., 2012; Jiang et al., 2013). At HG and SF, the dilution effect of 

rainwater was more dominant than the dissolution effect. At BSW, where the average 

concentration of  ∑PAHs during the rainy season (2183 ng L_1) was much higher than that 

during the dry season (1289 ng L-1), the dissolution effect was prominent. This can be 

attributed to a better eco-environment at BSW spring catchment, where the regulating 

capacity of vegetation is stronger than that of other spring catchments. The strong regulating 

capacity of vegetation increased the residence-time of rainwater in the epikarst spring system 

to dissolve more soil PAHs. 

The seasonal variations of ∑PAHscarc were different from those of the ∑PAHs (Fig. 3). The 

mean concentration of  ∑PAHscarc during the rainy season was higher than that during the 

dry season for each spring. This is because that the PAHscarc are 4-5 rings PAHs, which are 

difficult to migrate in soils during the dry season (Schwarz et al., 2011; Perrette et al., 2013). 

But during the rainy season, the increased soil moisture allowed abundant DOM and colloids 

dissolved by soil water to carry more PAHscarc into groundwater (Shevenell and McCarthy, 

2002; Schwarz et al., 2011). 

The annual average percentage was 72-79% for 2-3 rings PAHs, and less than 39% for 5-6 

rings PAHs (Fig. 4). During the rainy season, the 2-3 rings PAHs decreased by 22-29% due to 

a remarkable dilution effect, while 5-6 rings PAHs increased from 5 to 6 to 15-19% due to the 

dissolution effect at SF, HG and LHG. This is different from the non-karst system, where low 

molecular weight PAHs were transferred to the groundwater, and high molecular weight 

PAHs were efficiently filtered by soils in forest (Perrette et al., 2013). 

The increased soil permeability is responsible for the fast migration of the intrinsically 

hydrophobic 5-6 rings PAHs during the rainy season at SF, HG and LHG (Bandowe et al., 

2011). A large amount of DOC (Table 2) carrying 5-6 rings PAHs was flushed into the spring 

water due to the intensive rainfalls during the rainy season, while the DOC was low during 

the dry season, implying less 5-6 rings PAHs entered the springwater during the dry season. 

The seasonal variation was not very marked at BSW (Fig. 4). The strong storage capacity of 

the ecosystem resulted in high-soil permeability, and this allows the high-ring PAHs to 

migrate with DOM in soils during the dry season (Li, 2009). 

The percentages of 4 and 5-6 rings PAHs in SF spring water (the mean percentage: 21.8%) 

were significantly higher than those in SF soil (the mean percentage: 4.8%). A possible 

reason was that the pressure of spring water dropped at the outlet due to forming a turbulence 

flow (Jiang et al., 2013), which caused the strong volatilization of 2-3 rings PAHs and 

brought increases in 4 and 5-6 rings PAHs in spring water. The percentage of 4 and 5-6 rings 

PAHs increased most obviously at SF due to the largest flux in SF spring. 



Table 2 Composition and concentration of PAHs (ng L_1) and DOC (mg L_1) in epikarst 

springs. 

 

Note: 1)* stands for carcinogenic PAHs; PAHscarc stands for 7 carcinogenic PAHs; N.D stands 

for below the detection limit.; DS stands for dry season; RS stands for rainy season. 

3.3. Factors influencing the migration of PAHs in soils 

In order to unveil soil characteristics influencing the vertical migration of PAHs, the 

relationship between TOC, soil water contents, pH, and clay contents (Fig. 5) with the 

concentrations of  ∑PAHs were analyzed by using the multiple regression analysis. The 

concentrations of ∑PAHs exhibited a good linear relation with TOC (p < 0.05, within the 

95% confidence interval) at the sites S1 (R2 = 0.880), S2 (R2 = 0.965), S3 (R2 = 0.995) and S4 

(R2 = 0.843). Thus, it can be inferred that PAHs at these sites were strongly adsorbed by 

SOM, and thus the vertical migration of PAHs was significantly influenced by TOC. For S5, 

no main factors were observed by the multiple regression analysis, indicating that PAHs were 

easy to migrate vertically in this catchment (Levy et al., 2017). The migration of PAHs in 

soils was greatly affected by TOC, soil structures and textures, and land use types or farming 

patterns (Krauss et al., 2000; He et al., 2009). Due to the hydrophobicity and nonpolarity, 

PAHs mainly combined with SOM or humus colloids in soils (Weigand et al., 1998; Chefetz 

et al., 2000; Bogan and Sullivan, 2003). Thus, SOM played as carriers of PAHs for downward 

migration (Krauss et al., 2000; Zhang et al., 2006) and protected PAHs from the degradation. 

The adsorption of PAHs on SOM was affected by soil pH, which can alter the amounts of 

hydrophobic regions in SOM, and can lead to coagulation by forming intramolecular 

hydrogen bond (Raber et al., 1998). Clays of finer particles had larger specific surface area 

and more adsorption sites (Soren and Gerhard, 2002), and showed higher sorption capacity to 

PAHs than the fine or coarse sands (Maruya et al., 1996). The influence of water content on 

vertical migration of PAHs cannot be neglected, as low hydrophobicity PAHs can migrate or 

diffuse with the seepage water in soils (Schwarz et al., 2011). But water molecules may 

compete with PAHs for the adsorption sites on soil colloids (Knabner et al., 1996), hinder 

binding of PAHs with SOM and facilitate the downward migration with moving water. 

The annual average discharge of the spring waters was 0.05 (HG), 0.48 (LHG), 1.2 (BSW) 

and 6.3 L s_1 (SF) (Jiang et al., 2013; Li, 2009). Therefore, the corresponding annual average 

flux of PAHs were 106 (HG), 771(LHG), 2157 (BSW) and 10,508 ng s_1 (SF). The annual 

average flux of PAHs in the SF spring (site S5) was much higher than that in other springs. 

This was in line with the multiple regression analysis results that the soils at S5 were low in 

the content of clays and thus PAHs were easy to migrate into the underground water. 

Although the concentration of PPAHs in soils at S1 was the highest among all sites, the 

annual average flux of PAHs in the HG spring at S1 was the lowest. This was because that the 

TOC at S1 was higher than those at other sites (Fig. 5). This indicated that TOC increase in 

soil could prohibit the migration of PAHs in soil when the TOC was the key factor controlling 

the vertical migration in soil profiles. Although the soil water content was not regarded as the 



key factor influencing vertical migration of PAHs at S1, the obvious low soil water content at 

this site (Fig. 5) may still, to a certain extent, contribute to the low annual average flux of 

PAHs, due to few water molecules competing with PAHs to adsorb on the SOM. 

 

Fig. 3. Variation of total PAHs and PAHscarc concentration (ng L-1), isometric ratios and 

compositions in water samples from four springs. 

 





 

Fig. 4. Variation of isometric ratios and compositions in water samples from four springs. 

 



 

Fig. 5. Vertical distribution of soil physical-chemical indexes in the soil profiles. 

3.4. PAHs sources 

As Ant/(Ant t Phe) < 0.1 and Fla/(Fla t Pyr) > 0.5 (Fig. 2), PAHs in soils of the 5 sites were 

mainly derived from petroleum and the combustion of grass/wood/coal (Yunker et al., 2002). 

The ratio BaA/ (BaA t Chry) in most samples ranged from 0.1 to 0.35 (Fig. 2), further 

confirming a mixed source for PAHs at the 5 sites. In comparison with other PAHs, InP and 

BgP photodegrade slower with similar degradation rates (Yunker et al., 2002), and thus the 

ratio of InP/(InP t BgP) was more accurate as an indicator for the source of PAHs. As 

specified by the ratio of InP/(InP t BgP), the major source of PAHs at S1~S4 (sites near busy 

roads) was the combustion of petroleum, and grass/wood/coal, while that at S5 was the 

combustion of grass/wood/coal. 

The isomeric ratios indicated that the combustion of grass/ wood/coal was the most important 

source of PAHs in the springs (Fig. 4), with exception that the ratio of Ant/(Ant + Phe) 

indicated the direct petroleum contamination was the primary source for PAHs from June 

2011 to October 2011. However, as the ratio of Ant/ (Ant + Phe) during this period was 0.08-

0.09, which was close to the dividing line (0.1), it was not regarded as a strong indication, 

especially considering the faster photochemical transformation of Ant than Phe in the 

atmosphere (Fraser et al., 1998). From October 2010 to May 2011, the weather was foggy in 

the study area, and the photochemical decomposition of PAHs was slow and can be 

neglected. But after June 2011, the clear weather with strong solar irradiation obviously 

influenced the photochemical transformation of PAHs on the isomeric ratio. Fla and Pyr also 

underwent nonnegligible phototransformation during this period. However, this may not 

induce the marked influence on the ratio of Fla/(Fla + Pyr), since photodegradation rates of 



the two PAHs were close (Yunker et al., 2002; Tobiszewski and Namie_snik, 2012). During 

the study period, coal was still the major fossil fuels used in Chongqing Municipality. Thus, it 

was unsurprising that the combustion of coal was the primary source of PAHs in Nanchuan, 

where 60% of the electricity was generated from coal power plants in 2010 (CMBS, 2011). In 

some areas in Europe or North America, the wood/coal combustion was a primary source of 

PAHs, especially in winter when the intensive space heating was needed (Christensen and 

Arora, 2007; Ravindra et al., 2008). But in Chongqing, a subtropical zone, the electricity 

consumed by using air conditioners in summer (average temperature: 31.5 oC) were more 

intensive than that used for space heating in winter (average temperature: 7.9 oC). Thus, the 

ratios indicating the combustion of grass/wood/coal were stable in summer after June, but 

they varied markedly before June. 

4. Conclusions 

The occurrence of 16 priority PAHs in the soils and the epikarst spring water at Nanchuan 

District, Chongqing was investigated from October 2010 to October 2011. Due to the thin 

surface soil layer and karst features in the four epikarst spring systems, the epikarst spring 

water was contaminated and the detection ratio and concentrations of PAHs in epikarst spring 

water were high. The concentrations of PAHs in top soils were primarily influenced by 

vegetation covers of pine litters that released PAHs continuously and slowed down the 

photodegradation. The soil 2-3 rings PAHs increased gradually with the increase of altitude, 

and they dominated the PAHs in subsoil except for that at HG spring catchment. The vertical 

migration of PAHs was mainly influenced by vegetation covers, temperature, altitude, 

number of rings, soil TOC and soil compaction. In particular, TOC was the key factor 

controlling the vertical migration of PAHs in the overlying soil in HG, LHG and BSW 

epikarst spring catchment, which meant that increasing TOC contents could effectively hinder 

the vertical migration of PAHs. At SF spring catchment, the large flux led to a homogenous 

vertical distribution of PAHs, and thus the influence of the soil characteristics (TOC, water 

contents, pH, and clay contents) was insignificant. The main source of PAHs in the soils and 

springs was the combustion of grass/wood/coal, while the liquid fossil fuel combustion was a 

minor source. The high concentration and detection frequency of PAHs in epikarst spring 

waters indicate that the protection effects of karst soils for the undergroundwater were likely 

lost in the study area. Thus, increasing the soil TOC can reduce groundwater pollution, but 

most important, the development of renewable energy instead of fossil energy can protect soil 

and groundwater for the future pollution in this area. 

In the future research, the method and mechanism used to improve the bound capacity of 

PAHs to soil will be conducted. 
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