97 research outputs found

    The Effect of Chemical and High-Pressure Homogenization Treatment Conditions on the Morphology of Cellulose Nanoparticles

    Get PDF
    Cellulose nanoparticles were fabricated from microcrystalline cellulose (MCC) through combined acid hydrolysis with sulfuric and hydrochloric acids and high-pressure homogenization. The effect of acid type, acid-to-MCC ratio, reaction time, and numbers of high-pressure homogenization passes on morphology and thermal stability of the nanoparticles was studied. An aggressive acid hydrolysis was shown to lead to rod-like cellulose nanocrystals with diameter about 10 nm and lengths in the range of 50–200 nm. Increased acid-to-MCC ratio and number of homogenization treatments reduced the dimension of the nanocrystals produced. Weak acid hydrolysis treatment led to a network of cellulose nanofiber bundles having diameters in the range of 20–100 nm and lengths of a few thousands of nanometers. The high-pressure homogenization treatment helped separate the nanofiber bundles. The thermal degradation behaviors characterized by thermogravimetric analysis at nitrogen atmosphere indicated that the degradation of cellulose nanocrystals from sulfuric acid hydrolysis started at a lower temperature and had two remarkable pyrolysis processes. The thermal stability of cellulose nanofibers produced from hydrochloric acid hydrolysis improved significantly

    Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis

    Get PDF
    BACKGROUND: Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. RESULTS: A 20 kb DNA fragment containing a plasmid replicon was isolated from B. thuringiensis subsp. tenebrionis YBT-1765 and characterized. By Southern blot analysis, this replicon region was determined to be located on pBMB165, the largest detected plasmid (about 82 kb) of strain YBT-1765. Deletion analysis revealed that a replication initiation protein (Rep165), an origin of replication (ori165) and an iteron region were required for replication. In addition, two overlapping ORFs (orf6 and orf10) were found to be involved in stability control of plasmid. Sequence comparison showed that the replicon of pBMB165 was homologous to the pAMβ1 family replicons, indicating that the pBMB165 replicon belongs to this family. The presence of five transposable elements or remnants thereof in close proximity to and within the replicon control region led us to speculate that genetic exchange and recombination are potentially responsible for the divergence among the replicons of this plasmid family. CONCLUSION: The replication and stability features of the pBMB165 from B. thuringiensis subsp. tenebrionis YBT-1765 were identified. Of particular interest is the homology and divergence shared between the pBMB165 replicon and other pAMβ1 family replicons

    Aggregation formation mediated anoikis resistance of BEL7402 hepatoma cells.

    Get PDF
    Anoikis resistance is the prerequisite of cancer cells metastasis. Elucidation of the mechanism of anoikis resistance remains a significant challenge. We reported here a model to mimic anoikis resistant process of hepatoma cells in vitro. Experimental results indicated cell to cell aggregation could mediate anoikis resistance of BEL7402 hepatoma cells. Further investigation of these aggregations indicated the biological properties changed greatly after the hepatoma cells lost their anchorage. Aggregation forming process could be separated into three distinct phases according to their biological characteristics, comprising of premature phase, mature phase and postmature phase. Mature phase aggregations have the premium state of cell viability and may mimic the metastatic cells in the circulating system. Biological properties of these three phases aggregations were studied in details including morphological alteration, cell viability and microarray expression profiles. It indicated there was a great upregulation of adhesion molecules during the process of aggregation formation and the cell to cell contact in the aggregation may be mediated independent of calcium involved adhesion pathway. This model might shed light on the anoikis resistance mechanism of hepatoma cells and help to develop new therapies that may target the anoikis resistant hepatoma cells in the metastasis process

    Nuclear Receptor Coactivator 2 Promotes Human Breast Cancer Cell Growth by Positively Regulating the MAPK/ERK Pathway

    Get PDF
    As a member of the p160 steroid receptor coactivator (SRC) family, nuclear receptor coactivator 2 (NCOA2) is known to play essential roles in many physiological and pathological processes, including development, endocrine regulation, and tumorigenesis. However, the biological function of NCOA2 in breast cancer is not fully understood. We found that the copy number of the NCOA2 gene was frequently amplified in four breast cancers datasets, varying from 6 to 10%, and the mRNA levels of NCOA2 were also upregulated in 11% of the sequenced cases/patients (TCGA provisional dataset). Next, we confirmed that NCOA2 silencing significantly suppressed cell proliferation in different breast cancer cell lines, by inducing cell cycle arrest and apoptosis. Mechanistically, whole-transcriptome sequencing (RNA-Seq) analysis showed that NCOA2 depletion leads to downregulation of the MAPK/ERK signaling cascade, possibly via downregulating NCOA2's downstream target RASEF. In conclusion, our results suggest NCOA2 as a potential target of therapeutics against breast cancer

    Enhanced daytime secondary aerosol formation driven by gas-particle partitioning in downwind urban plumes

    Get PDF
    Anthropogenic emissions from city clusters can significantly enhance secondary organic aerosol (SOA) formation in the downwind regions, while the mechanism is poorly understood. To investigate the effect of pollutants within urban plumes on organic aerosol (OA) evolution, a field campaign was conducted at a downwind site of the Pearl River Delta region of China in the fall of 2019. A time-of-flight chemical ionization mass spectrometer coupled with a Filter Inlet for Gases and Aerosol (FIGAERO-CIMS) was used to probe the gas- and particle-phase molecular composition and thermograms of organic compounds. For air masses influenced by urban pollution, strong daytime SOA formation through gas-particle partitioning was observed, resulting in higher OA volatility. The obvious SOA enhancement was mainly attributed to the equilibrium partitioning of non-condensable (C * ≥ 100.5 μg m-3) organic vapors. We speculated that the elevated NOx concentration could suppress the formation of highly oxidized products, resulting in a smooth increase of condensable (C * < 100.5 μg m-3) organic vapors. Evidence showed that urban pollutants (NOx and VOCs) could enhance the oxidizing capacity, while the elevated VOCs was mainly responsible for promoting daytime SOA formation by increasing the RO2 production rate. Our results highlight the important role of urban anthropogenic pollutants in SOA control in the suburban region

    Soyasaponins Can Blunt Inflammation by Inhibiting the Reactive Oxygen Species-Mediated Activation of PI3K/Akt/NF-kB Pathway

    Get PDF
    We and others have recently shown that soyasaponins abundant in soybeans can decrease inflammation by suppressing the nuclear factor kappa B (NF-kB)-mediated inflammation. However, the exact molecular mechanisms by which soyasaponins inhibit the NF-kB pathway have not been established. In this study in macrophages, soyasaponins (A1, A2 and I) inhibited the lipopolysaccharide (LPS)-induced release of inflammatory marker prostaglandin E2 (PGE2) to a similar extent as the NF-kB inhibitor (BAY117082). Soyasaponins (A1, A2 and I) also suppressed the LPS-induced expression of cyclooxygenase 2 (COX-2), another inflammatory marker, in a dose-dependent manner by inhibiting NF-kB activation. In defining the associated mechanisms, we found that soyasaponins (A1, A2 and I) blunted the LPS-induced IKKα/β phosphorylation, IkB phosphorylation and degradation, and NF-kB p65 phosphorylation and nuclear translocation. In studying the upstream targets of soyasaponins on the NF-kB pathway, we found that soyasaponins (A1, A2 and I) suppressed the LPS-induced activation of PI3K/Akt similarly as the PI3K inhibitor LY294002, which alone blocked the LPS-induced activation of NF-kB. Additionally, soyasaponins (A1, A2 and I) reduced the LPS-induced production of reactive oxygen species (ROS) to the same extent as the anti-oxidant N-acetyl-L-cysteine, which alone inhibited the LPS-induced phosphorylation of Akt, IKKα/β, IkBα, and p65, transactivity of NF-kB, PGE2 production, and malondialdehyde production. Finally, our results show that soyasaponins (A1, A2 and I) elevated SOD activity and the GSH/GSSG ratio. Together, these results show that soyasaponins (A1, A2 and I) can blunt inflammation by inhibiting the ROS-mediated activation of the PI3K/Akt/NF-kB pathway

    Scheme Comparison of New Airport Site Selection Based on Lattice Order Decision Making Method in the Integrated Transportation System

    Get PDF
    In view of the limited rational decision made by decision-makers in reality, multi-objective Lattice Order Decision Making is introduced in the new airport site selection and Lattice Order Decision evaluation index system is constructed. Based on the types of index, processed the index into dimensionless, Integrate decision-makersâ?? subjective judgment and the data dispersion feature to calculate the relative weights of the evaluation index. Combined with Decision-making moment, calculate the value of comprehensive differences of the schemes, and realize the Lattice Ordering of the schemes. Apply this decision-making method to evaluate three sets of alternative airport site selection schemes in Chengdu. The outcome is consistent with the actual situation, which proved that the decision-making method is reasonable

    NO Removal from Flue Gas by Using Chlorine Dioxide Solution

    No full text

    Sodium Butyrate Induces CRC Cell Ferroptosis via the CD44/SLC7A11 Pathway and Exhibits a Synergistic Therapeutic Effect with Erastin

    No full text
    Colorectal cancer (CRC) is one of the most common malignancies, and effective treatment and prevention methods are lacking. Sodium butyrate (NaB) is a short-chain fatty acid produced by intestinal microbial fermentation of dietary fiber. It has been shown to be effective in inhibiting CRC, but the mechanism is not known. Methods: Human normal intestinal epithelial cell line FHT and colorectal tumor cell line HCT-116 were treated with NaB alone or in combination with different programmed cell death inhibitors. Cell activity was then assessed with MTT assays and PI staining; ferroptosis with Fe2+, glutathione (GSH), and lipid peroxidation assays; signaling pathway screening with PCR arrays; and CD44, SCL7A11, and GPX4 expression with Western blotting. A CD44-overexpressing HCT-116 cell line was constructed to determine the effect of the overexpression of CD44 on NaB-induced ferroptosis. The synergistic effect of co-treatment with NaB and Erastin was assessed by isobolographic analysis. Results: NaB induced apoptosis and ferroptosis in HCT-116 cells but only induced low-level apoptosis in FHC cells. Moreover, NaB significantly increased intracellular Fe2+ and promoted GSH depletion and lipid peroxidation in HCT-116 cells. Ferroptosis-related qPCR array analysis identified CD44/SLC7A11 as a potential effector molecular of NaB-induced ferroptosis. NaB significantly inhibited the expression of CD44 and SLC7A11 in mouse CRC tissues. A CD44 overexpressed HCT-116 cell line was used to verify that CD44/SLC7A11 was a key signaling pathway that NaB-induced GSH depletion, lipid peroxidation accumulation, and ferroptosis in HCT-116 cells. Examination of whether NaB can increase the effect of ferroptosis agents showed that NaB, in combination with Erastin, a ferroptosis inducer, further promoted HCT-116 cell death and increased changes of ferroptosis markers. Conclusions: Our results suggest that NaB induces ferroptosis in CRC cells through the CD44/SLC7A11 signaling pathway and has synergistic effects with Erastin. These results may provide new insights into CRC prevention and the combined use of NaB and ferroptosis-inducing agents
    • …
    corecore