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As a member of the p160 steroid receptor coactivator (SRC) family, nuclear receptor

coactivator 2 (NCOA2) is known to play essential roles in many physiological

and pathological processes, including development, endocrine regulation, and

tumorigenesis. However, the biological function of NCOA2 in breast cancer is not

fully understood. We found that the copy number of the NCOA2 gene was frequently

amplified in four breast cancers datasets, varying from 6 to 10%, and the mRNA

levels of NCOA2 were also upregulated in 11% of the sequenced cases/patients

(TCGA provisional dataset). Next, we confirmed that NCOA2 silencing significantly

suppressed cell proliferation in different breast cancer cell lines, by inducing cell

cycle arrest and apoptosis. Mechanistically, whole-transcriptome sequencing (RNA-Seq)

analysis showed that NCOA2 depletion leads to downregulation of the MAPK/ERK

signaling cascade, possibly via downregulating NCOA2’s downstream target RASEF.

In conclusion, our results suggest NCOA2 as a potential target of therapeutics against

breast cancer.

Keywords: NCOA2, breast cancer, RASEF, MAPK/ERK, therapeutic target

INTRODUCTION

Nuclear receptor coactivator 2 (NCOA2), also known as steroid receptor coactivator 2 (SRC-2),
belongs to the p160 steroid receptor coactivator (SRC) family. This protein family contains three
members, NCOA1, NCOA2, and NCOA3 (1–3), which are recruited to the enhancer/promoter
regions of target genes and serve as transcriptional coactivators for ligand-bound nuclear receptors
and transcription factors (4). SRC proteins contain three types of domains: (1) The N-terminal
basic helix-loop-helix-Per/ARNT/Sim (bHLH-PAS) domain, which interacts with transcription
factors (5, 6); (2) The LXXLL (L for leucine and X for any amino acid) motif, in the central
region, responsible for nuclear hormone receptors (NRs) binding (7, 8); (3) Two distinct
transcriptional activation domains (AD1 and AD2), at the C-terminus, needed for recruiting
additional coregulators, such as histone acetyltransferases (HAT), coactivator-associated arginine
methyltransferase 1 (CARM1) and protein arginine methyltransferases (PRMTs) (9–12).
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Despite sharing homologous structure with each other, the
three SRCmembers play distinct roles in many physiological and
pathological processes, including development, organ function,
endocrine regulation, metabolism, and tumorigenesis (13–17).
Interestingly, NCOA2 is widely known for its oncogenic role,
and NCOA2 gene fusions, mutations, deletions, and insertions
have been observed in multiple cancers including endometrial,
cancer, and pleural cancer (18, 19). Additionally, NCOA2 is
amplified or overexpressed in 8% of the primary pancreatic
cancers, and its expression level is associated with tumor relapse
following androgen deprivation therapy (ADT); mechanistically,
NCOA2 overexpression in prostate tumors may lead to
hyperactivation of the PI3K/AKT signaling, thus exacerbating
tumor malignance (20).

SRC members have also been implicated in the pathology of
breast cancer (17) and gene amplification and overexpression
of SRCs has been described in breast cancer previously (21–
23). NCOA1 has been found to potentiate the roles of estrogen
receptor (ER) and mediate transcription reprogramming in ER-
positive breast cancer cells (24). However, the biological roles
of NCOA2 in breast cancer, especially in triple negative breast
cancers (TNBC) remain elusive. In this study, we investigated the
role of NCOA2 in regulating cell growth of breast cancer cells
with different hormone receptor status.

MATERIALS AND METHODS

Reagents
RPMI-1640 Medium, Dulbecco’s modified Eagle’s medium
(DMEM) and fetal bovine serum (FBS) were obtained from
Gibco (Grand Island, NY, USA). Antibodies against phospho-
ERK (Thr202/Tyr204; #4370, 1:1,000), ERK (#4695, 1:1,000WB),
phospho-MEK (Ser217/221; #9154, 1:2,000), MEK (#9122,
1:2,000), were purchased from Cell Signaling Technology
(Danvers, MA, USA). Antibodies against tubulin (#66240-1-
Ig, 1:5,000), β-actin (#60008-1-Ig, 1:5,000), were purchased
from Proteintech. The NCOA2 (ab1877, 1:5,000) antibody
was purchased from Abcam (Cambridge, UK). Secondary
antibodies (1:5,000) conjugated to horseradish peroxidase (HRP)
were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA).

Analysis of Publicly Available Datasets
To analyze copy number variation and mRNA expression of the
indicated genes in breast cancers, we obtained different dataset by
using the cBioPortal (www.cbioportal.org). The copy number of
NCOA2were analyzed in four independent dataset [METABRIC,
Nat Commun 2016; BRCA, INSERM 2016; TCGA Pancancer
Atlas; The Metastatic Breast Cancer (MBC) Project]. The mRNA
expression of NCOA2 was available in the TCGA provisional
dataset. To show the expression levels of NCOA2 in multiple
cancer types, we determined the NCOA2 expression in the
Ramaswamy Multi-cancer Statistics by using the OncomineTM

online system (www.oncomine.org). To study the effect of
NCOA2 expression on the prognosis of patients with breast
cancer, we generated Kaplan-Meier survival curve of breast
cancer patients with low or high expression of NCOA2 by using

the Gene Expression Profiling Interactive Analysis (GEPIA)
online tool (http://gepia.cancer-pku.cn). GEPIA was also used to
analyze the correlation (Pearson correlation coefficient) between
NCOA2 and RASEF gene expression.

Cell Culture, Constructs Preparation,
and Transfection
MDA-MB-231, and MCF7 cells were purchased from ATCC.
T47D was purchased from Cell Bank of Shanghai Institutes
for Biological Sciences of Chinese Academy of Sciences. Cells
were cultured in RPMI-1640 Medium or DMEM supplemented
with 10% FBS at 37◦C in a humidified atmosphere with
5% CO2. All constructs used in this study were generated
via standard cloning strategy. Briefly, a FLAG-tagged NCOA2
expression vector was created by ligation of NCOA2 open
reading frame (ORF) sequence into the lentiviral vector pHAGE
(Addgene, MA, USA). Short interfering (si)RNA sequences
were as follows: siNCOA2, GGG CTG TTA ACA TTA GC
AA; si-negative control (NC), TTC TCC GAA CGT GTC
AC GT; siRASEF-1, GCC TTT CTT CAG AGT GAG TTA;
siRASEF-2, GCC AAG ATT AAT TCA GCC ATA. For short
hairpin (sh)RNA cloning, the oligonucleotides encoding the
above indicated siRNA sequences were synthesized with a
loop sequence separating the complementary domains, and
then cloned into the pLK0.1 vector (Sigma Aldrich, St. Louis,
MO, USA). For lentivirus packaging, the recombinant plasmids
or control pLKO.1 plasmids were then co-transfected into
HEK293T cells with two helper plasmids, psPAX2 and pMD2G
(Addgene). Forty-eight hours after transfection, the supernatants
containing lentiviruses were harvested and filtered through a
0.45-µm-mesh filter. After lentiviral infection, the infected cells
were selected with puromycin (Sigma Aldrich; 4µg/mL) for
2 days.

Colony Formation Assays
After lentiviral infection, breast cancer cells were trypsinized and
seeded in 6-well plates (1,500 cells/well). After 10 days (when
colonies had formed), the plates were rinsed with PBS and the
cells were fixed with 4% paraformaldehyde. After 15min, the
cells were stained with crystal violet for 10min. After washing
with PBS for three times, the stained colonies were observed
and photographed.

MTS Assays for Cell Proliferation
After lentiviral infection, breast cancer cells were trypsinized,
seeded in 96-well plates (3 × 103 cells/well) and grown at 37◦C.
At the end of the indicated incubation time, cell proliferation was
assessed using an MTS colorimetric assay (Promega, Madison,
WI, USA). Uponmedia removal,MTS (20µL) was added into the
complete culture medium (100 µL) for 30min. After incubation,
the absorbance of the formazan product was recorded at 490 nm
using the Spectra MAX 190 microplate reader (Molecular
Devices, CA, USA).

Fluorescence Activated Cell Sorting (FACS)
At the indicated time points, the cells were trypsinized and
washed with ice-cold PBS. For cell cycle distribution analysis, the
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cells were fixed with 70% ethanol and stained with PI/RNase/PBS
(100µg/mL PI and 10µg/mL RNase A) buffer for 30min at room
temperature (20–25◦C) in dark. For apoptosis analysis, the cells
were stained using a PI and AnnexinV-FITC staining kit (BD
Biosciences) for 30min at room temperature in the dark. The
stained single cell suspension was analyzed on a BD LSRFortessa
SORP flow cytometer (BD Biosciences). The ModFit LT software
(Verity Software House, Topsham,ME, USA) was used to analyze
the flow cytometry data. For apoptotic analysis, the cells in the
lower right quadrant are in early apoptosis and those in the upper
right quadrant are in mid and late apoptosis. Generally, the two
quadrants are scored as total (25).

Western Blot (WB) Analysis
Total cell lysates were prepared from breast cancer cells
using RIPA lysis buffer (Applygen Technologies Inc., Beijing,
China) supplemented with a protease inhibitor cocktail (Roche
Diagnostics, Mannheim, Germany). Equal amounts of proteins
were separated in SDS-polyacrylamide gels and transferred to a
polyvinylidene difluoride (PVDF) membrane (Merck Millipore,
Massachusetts, USA). The PVDF membrane was incubated with
blocking buffer (5% non-fat dry milk in TBST) for 1 h and
then with indicated primary antibodies at 4◦C overnight. After
three washes with TBST, the membrane was incubated with
HRP-conjugated secondary antibodies for 1–2 h. Immunoblots

were washed and visualized using the SuperSignal
TM

West Pico
Chemiluminescent Substrate (Thermo Fisher Scientific, San Jose,
CA, USA) and the ImageQuant LAS500 (GE Healthcare Bio-
Sciences AB). The expression of tubulin or β-actin was used as
a loading control.

Reverse Transcription and Quantitative
PCR (qPCR)
For reverse transcription, 1µg total RNA was reverse transcribed
using theM-MLVReverse Transcriptase Kit (Promega) following
the manufacturer’s protocol. Then following primers were used:
Actin-F, 5′- GCA TCC CCC AAA GTT CAC AA-3′, Actin-R, 5′-
AGGACTGGGCCATTC TCC TT-3′; NCOA2-F, 5′-TGGGGC
CTATGATGCTTGAG-3′, NCOA2-R, 5′-GGTTTTTGACAA
ATT CCG TGT GG-3′; RASEF-F, 5′-TTC CCC TCA ACC TCT
AGGCTA-3′, RASEF-R, 5′-CAACTTCACAAT TTGTCC TCT
GC-3′. The PCR reactions (20µL volume) contained: 2× SYBR R©

premix Ex TaqTM, 10 µL; forward and reverse primers (10µM),
0.5 µL; cDNA, 4 µL; ddH2O, 5 µL. qPCR was performed on
a CFX96 real-time detection system (Bio-Rad) according to the
manufacturer’s protocol. Each sample was run intriplicate.

RNA Sequencing and Data Analysis
Whole-transcriptome sequencing (RNA-Seq) was performed
as described before (26). Briefly, total RNA was isolated
from MDA-MB-231 cells with the QIAGEN RNeasy Plus
kit (Qiagen, Valencia, CA, USA). The poly(A)-containing
mRNAs were purified and enriched by PCR to create the final
library according to the Illumina TruSeq RNA protocols. The
libraries were sequenced on an Illumina High HiSeq 2000
with paired-end 100 base pair long reads. The raw sequencing
data were examined using the FastQC software (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc). The reads
were aligned to human genome sequences using TopHat2
(https://ccb.jhu.edu/software/tophat/index.shtml). Mapped
reads were assembled with the Cufflinks (http://cole-trapnell-
lab.github.io/cufflinks/). Read count per RNA was computed
using HTSeq (https://htseq.readthedocs.io/en/release_0.10.
0/). Log2 transformations were performed on normalized
read counts. Differential expression analyses were performed
using DESeq2 (https://bioconductor.riken.jp/packages/2.
14/bioc/html/DESeq2.html). For functional annotation, the
KEGG pathways were determined by analyzing dysregulated
mRNAs using DAVID (https://david.ncifcrf.gov). Gene Set
Enrichment Analysis (GSEA) was performed to evaluate
significant enrichment of genes using GSEA software (http://
software.broadinstitute.org/gsea/index.jsp).

Statistical Analysis
For statistical analysis, the Student’s t-test was used for
parametric variables. All experiments were performed at least
three times, and a P< 0.05 was considered statistically significant.

RESULTS

Analysis of the NCOA2 Gene in Breast
Cancer Samples
The copy number of the NCOA2 gene was analyzed by using
the cBioPortal online tool (www.cbioportal.org) and found to
be frequently amplified in four independent breast cancers
datasets [METABRIC, Nat Commun 2016; BRCA, INSERM
2016; TCGA Pancancer Atlas; The Metastatic Breast Cancer
(MBC) Project] (27–29), varying from 5 to 14% amplification
(Figure 1A). Not surprisingly, the mRNA levels of NCOA2
were also upregulated in 118 (11%) of 1,082 sequenced
cases/patients (TCGA provisional dataset; Figure 1B). Moreover,
by cross-comparing the results obtained from the Ramaswamy
Multi-cancer Statistics using the online Oncomine tool (www.
oncomine.org), we found that the expression of NCOA2 in
breast cancer was relatively higher than that in other cancer
types, including prostate cancer, bladder cancer, lung cancer,
and lymphoma among others (Figure 1C) (30), suggesting
an important role for NCOA2 in regulating breast cancer
development. Importantly, as revealed in Figure 1D, higher
NCOA2 expression was significantly correlated with poor overall
survival of patients with breast cancer, with a hazard ratio of 1.8
(log-rank p= 0.017).

NCOA2 Is Essential for the Growth of
Breast Cancer Cells
To evaluate the biological role of NCOA2 in human breast
cancer, we applied lentivirus-mediated RNA interference toward
NCOA2 in three breast cancer cell lines (MDA-MB-231, ERα-
, PR–, and HER2–; T47D, ERα+, PR+, and HER2–; MCF7,
ERα+, PR+, andHER2+/–). Both colony formation (Figure 2A)
and MTS cell proliferation (Figures 2C,D) assays indicated that
NCOA2 knockdown significantly suppressed cell proliferation
in different breast cancer cell lines. To rule out the unwanted
toxicity induced by the off-target activity of the interfering RNAs
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FIGURE 1 | NCOA2 is amplified in breast cancer. (A) The copy number of NCOA2 were analyzed in four independent dataset [METABRIC, Nat Commun 2016;

BRCA, INSERM 2016; TCGA Pancancer Atlas; The Metastatic Breast Cancer (MBC) Project] using the cBioPortal online tool. The amplification frequency in each

dataset was shown in red bar. (B) The mRNA expression of NCOA2 was available in the TCGA provisional dataset using the cBioPortal online tool. The frequency of

NCOA2 high expression was shown in pink. (C) The mRNA expression levels of NCOA2 in multiple cancer types (in Ramaswamy Multi-cancer Statistics)

(Continued)
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FIGURE 1 | were determined by using the Oncomine online dataset. In the single-gene views of the online system, samples are divided between the breast cancer

(test) class and the other cancer type (control) classes against which the NCOA2 gene expression in the test class is measured. The breast cancer (test) class is

highlighted in deeper blue and statistics including fold change and p-value were presented in the top right corner. (D) Overall survival (OS) rates were compared

among patients in different quartiles using Kaplan–Meier survival curves and log-rank tests by using the GEPIA online tool.

FIGURE 2 | Knockdown of NCOA2 significantly inhibits breast cancer cell growth. (A) MDA-MB-231, T47D, and MCF7 cells overexpressing the indicated shRNAs

were grown for 10 days, to allow the formation of colonies, which were then stained and photographed. (B) NCOA2 silencing-resistant MDA-MB-231 cells (dashed

lines, referred to as NCOA2) or RFP-overexpressing cells (control group; continuous lines, referred to as RFP) were infected with viruses overexpressing shNCOA2 or

control shRNAs, and the cell growth was assessed in MTS proliferation assays. (C,D) MTS cell proliferation assays were performed on MDA-MB-231 (C) and T47D

cells (D), after overexpression of shNCOA2 or control shRNAs. ***P < 0.001; ****P < 0.0001.

(31) we generated a NCOA2-overexpressing construct with a
silent mutation that made NCOA2 mRNA resistant to RNA
interference. Ectopic expression of shRNA-resistant NCOA2
(dashed line, green) completely rescued the inhibitory effect
of shNCOA2 treatment in MDA-MB-231 cells, demonstrating
that the inhibition of cell growth resulted from NCOA2
depletion (Figure 2B).

Both NCOA2-depleted MDA-MB-231 and T47D cells
showed a G2/M arrest, as demonstrated by cell cycle analysis
(Figures 3A,C). At the same time, we detected significant
apoptosis in these cells (Figures 3B,D). These results
indicate that NCOA2 knockdown hampers breast cancer
cells proliferation primarily by inducing cell cycle arrest
and apoptosis.

NCOA2 Regulates the Mitogen-Activated
Protein Kinase MAPK/ERK
Signaling Pathway
To characterize the functional effects of NCOA2 knockdown,
we assessed the gene expression profiles of NCOA2-depleted

MDA-MB-231 cells by RNA-Seq. We identified 696 upregulated
and 1,421 downregulated genes in NCOA2-depleted cells, as
compared with the control group. All differentially expressed
genes were subjected to pathway analysis using the DAVID
online tool. Our data indicated that NCOA2 is implicated in the
regulation of several essential pathways, including the apoptotic,
p53, MAPK, and Ras pathways among others (Figure 4A).
Next, GSEA analysis revealed that genes dysregulated upon
NCOA2 depletion were enriched in the MAPK signaling pathway
(Figure 4B). Furthermore, WB analysis confirmed that when
NCOA2 was depleted in breast cancer cells, the activity of the
MAPK/ERK signaling was strongly inhibited, as represented by
the decreased protein levels of p-MEK and p-ERK (Figure 4C).

NCOA2-Controlled RASEF Expression May
Regulate ERK Activation and
Cell Proliferation
The Ras superfamily of small GTPases consists of more than
100 members, which can be divided into several principal
families: Ras, Rho, Rab, Arf (ADP-ribosylation factors), and Ran
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FIGURE 3 | Knockdown of NCOA2 inhibits cell cycle and induces apoptosis. (A,B) MDA-MB-231 cells were subjected to PI (A) or AnnexinV-FITC (B) staining, for cell

cycle or apoptosis detection, respectively. (C,D) T47D cells were subjected to PI (C) or AnnexinV-FITC (D) staining, for cell cycle or apoptosis detection, respectively.

For apoptotic analysis, the cells in the lower right quadrant are in early apoptosis and those in the upper right quadrant are in mid and late apoptosis. Generally, the

two quadrants are scored as total. **P < 0.01; ***P < 0.001.
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FIGURE 4 | NCOA2 depletion suppresses the MAPK/ERK signaling cascade. (A) RNA-Seq was performed on NCOA2-depleted MDA-MB-231 cells; differentially

expressed genes were subjected to pathway analysis using the DAVID online tool. The top 10 significant pathways are shown. (B) GSEA analysis was performed to

evaluate significant enrichment of genes on the MAPK pathway. (C) WB analysis of MDA-MB-231 cells after NCOA2 knockdown to assess the expression of pMEK

and pERK.

(32). Studies have shown that many Ras superfamily members
are involved in the regulation of the MAPK/ERK signaling
pathway, which is an oncogenic signaling cascade essential for
cancer cell growth (33–35). Interestingly, we identified that the
expression of Ras and EF-hand domain containing (RASEF)
was significantly downregulated upon NCOA2 depletion, as
shown by RNA sequencing (Figure 4A) and qPCR analysis
(Figure 5A). RASEF, a member of the Rab GTPase protein
family, has been shown to positively regulate ERK signaling
cascade in lung cancer (36). We confirmed that RASEF depletion
could remarkably suppress the activity of the MAPK/ERK
signaling cascade by using two independent shRNA sequences
targeting RASEF (Figure 5B). Further, analysis of breast cancer
tissue data from the TCGA database showed that RASEF and
NCOA2 levels were strongly and positively correlated (R =

0.51, P < 0.0001; Figure 5C). Further, to determine whether
RASEF downregulation accounted for the anti-proliferative
effect of NCOA2 depletion, we assessed breast cancer cell
growth after RASEF knockdown in MTS cell proliferation
(Figure 5D) and colony formation (Figure 5E) assays. We found

that RASEF depletion significantly inhibited the growth of
MDA-MB-231 cells. Therefore, our data suggested that RASEF
expression is controlled by NCOA2, and decreased RASEF levels
might contribute to ERK deactivation and to the blockade of
cell growth.

DISCUSSION

Breast cancer is a common malignant cancer occurring in the
breast epithelial tissue and remains one of the diseases with the
highest mortality rate. Statistically, one in eight women in the
US may develop breast cancer in her lifetime, and over 30,000
breast cancer deaths were expected to occur among US women
in 2013 (37). Numerous studies conducted on breast cancer
have revealed that breast cancer is a complex heterogeneous
disease, which can be divided into a variety of subtypes with
different responses to the treatment and clinical outcomes (38).
At the molecular level, differences in the expression levels of
the established breast cancer biomarkers ER, PR, and HER2 are
used for decision-making in clinical investigations (39, 40). ER
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FIGURE 5 | NCOA2 depletion inactivates the MAPK/ERK signaling cascade by downregulating RASEF expression. (A) The mRNA expression levels of NCOA2 and

RASEF were determined in NCOA2-depleted and control MDA-MB-231 cells. (B) WB analysis of RASEF-silenced MDA-MB-231 cells to assess the expression of

pMEK and pERK. (C) The correlation (Pearson correlation coefficient) between NCOA2 and RASEF expression in breast cancer specimens was assessed using the

GEPIA online tool on the TCGA database. (D,E) MTS cell proliferation (D) and colony formation (E) assays were performed on MDA-MB-231 cells after

overexpression of shRASEF or control shRNAs. ***P < 0.001; ****P < 0.0001.

and PR are well-known nuclear receptors that can interact with
nuclear receptor co-activators, including SRC family members,
to initiate transcription of steroid-responsive genes (41). Given
their importance in NR signaling, the SRC family (NCOA1-3) is
worthy of extensive investigation.

While the functions of NCOA1 and NCOA3 have been widely
explored in breast cancer, little is known about the biological
roles of NCOA2 in regulating genes involved in breast cancer
progression (23, 42–44). Although NCOA2 depletion in MCF-
7 cells has been shown to suppress estrogen-dependent ERα

transactivation function, it does not seem to affect the estrogen-
dependent proliferation of these cells (45), suggesting an ERα-
independent role for NCOA2 may exist in breast cancer.

Here, we showed that NCOA2 is amplified and overexpressed
in around 10% breast cancer samples in the TCGA data set,
and higher NCOA2 expression correlated with a poor overall
survival status (Figure 1). In in vitro experiments in breast cancer
cell lines with different nuclear receptor status (MDA-MB-231,
ERα-, PR–, and HER2–; T47D, ERα+, PR+, and HER2-; MCF7,
ERα+, PR+, and HER2+/–), we demonstrated that NCOA2

Frontiers in Oncology | www.frontiersin.org 8 March 2019 | Volume 9 | Article 164

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cai et al. NCOA2 Promotes BRCA Cell Growth

knockdown strongly inhibited cancer cell growth. Previous
studies have established that the differential expression of ER and
SRC proteins modulates estrogenic action during tumorigenesis
of breast cancer: in a group of breast cancer specimens, the
expression of ERα significantly correlated with that of PR and
nuclear receptor corepressor 1 (NCoR1), whereas ERβ expression
was associated with NCOA1 andNCOA2 expression (46). On the
other hand, increased levels of NCOA3 have been shown to favor
the functional interaction of ERα and promote the estrogen-
dependentmitogenic stimulation of breast cancer cells (47). Since
the MDA-MB-231 line is an ERβ-positive cell line, it is worth
further investigation to explorer the interaction between NCOA2
and ERβ receptor. Additional functional and biochemical studies
are necessary to clarify how NCOA2 interacts with different NRs,
such as ERβ, androgen receptors, and corticosteroid receptors.

Mechanistically, we performed RNA-Seq analysis to explore
the potential mechanisms regulated by NCOA2 inMDA-MB-231
cells. Our data show that NCOA2may regulate TNBC cell growth
by modulating the oncogenic MAPK/ERK signaling pathway
(Figure 4), possibly via the downregulation of its downstream
target RASEF (Figure 5). RASEF has been reported to be a novel
diagnostic biomarker for lung cancer and play an oncogenic
role in lung cancer cell growth, possibly by activating the ERK
signaling cascade (36).

In summary, our findings show that NCOA2 is frequently
amplified in breast cancer and loss of NCOA2 remarkably
attenuates cell growth in breast cancer cell lines with different
NR status, strongly indicating that NCOA2 might be a potential
target for breast cancer treatment. The comprehensive molecular
mechanism underlying the interaction between NCOA2 and
different NRs is worthy of systemic investigation.
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