8 research outputs found

    Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells

    No full text
    Solid oxide electrolysis cell (SOEC) industrialization has been developing for many years. Commercial materials such as 8 mol% Y2O3-stabilized zirconia (YSZ), Gd0.1Ce0.9O1.95 (GDC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), La0.6Sr0.4CoO3−δ (LSC), etc., have been used for many years, but the problem of mismatched thermal expansion coefficients of various materials between cells has not been fundamentally solved, which affects the lifetime of SOECs and restricts their industry development. Currently, various solutions have been reported, such as element doping, manufacturing defects, and introducing negative thermal expansion coefficient materials. To promote the development of the SOEC industry, a direct treatment method for commercial materials—quenching and doping—is reported to achieve the controllable preparation of the thermal expansion coefficient of commercial materials. The quenching process only involves the micro-treatment of raw materials and does not have any negative impact on preparation processes such as powder slurry and sintering. It is a simple, low-cost, and universal research strategy to achieve the controllable preparation of the thermal expansion coefficient of the commercial material La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) through a quenching process by doping elements and increasing oxygen vacancies in the material. Commercial LSCF materials are heated to 800 °C in a muffle furnace, quickly removed, and cooled and quenched in 3.4 mol/L of prepared Y(NO3)3. The thermal expansion coefficient of the treated material can be reduced to 13.6 × 10−6 K−1, and the blank sample is 14.1 × 10−6 K−1. In the future, it may be possible to use the quenching process to select appropriate doping elements in order to achieve similar thermal expansion coefficients in SOECs

    Prevalence, Causes, and Risk Factors of Presenting Visual Impairment and Presenting Blindness in Adults Presenting to an Examination Center in Suzhou, China

    No full text
    Purpose. To evaluate the prevalence, causes, and risk factors of presenting visual impairment (PVI) and presenting blindness among adults in Suzhou, China. Methods. A total of 43927 subjects were included in this cross-sectional study. Each subject underwent ophthalmic examinations, including presenting visual acuity (PVA), intraocular pressure (IOP), slit-lamp examination, and fundus examination under the small pupils of each eye. Results. Using the World Health Organization (WHO) definition, the prevalence of bilateral PVI, bilateral presenting blindness, monocular PVI, and monocular presenting blindness was 1.59% (95% CI, 1.51–1.67), 0.002% (95% CI, 0.0019–0.0021), 3.87% (95% CI, 3.68–4.06), and 0.19% (95% CI, 0.18–0.20), respectively. Using the United States (US) definition, the prevalence of bilateral PVI, bilateral presenting blindness, monocular PVI, and monocular presenting blindness was 5.83% (95% CI, 5.54–6.12), 0.04% (95% CI, 0.038–0.042), 7.43% (95% CI, 7.06–7.80), and 0.45% (95% CI, 0.43–0.47), respectively. The prevalence of PVI was higher in females (WHO criteria, 2.06%, 95% CI, 1.96–2.16; US criteria, 7.27%, 95% CI, 6.91–7.63) than in males (WHO criteria, 1.2%, 95 CI%, 1.14–1.26; US criteria, 4.65%, 95% CI, 4.42–4.89). The leading cause of PVI is an uncorrected refractive error, followed by cataracts and age-related macular degeneration (AMD). Multivariate analysis proved that the prevalence of visual impairment (PVA, better eye, WHO criteria) increased significantly with older age, higher mean arterial pressure (MAP), higher globulin level, and higher fasting blood glucose (FBG). In addition, it also increased significantly with lower hemoglobin, a lower body mass index (BMI), and a lower arterial stiffness index. In this study, serum creatinine, blood urea nitrogen, uric acid, triglycerides, and the systemic immune-inflammation index (SII) showed no association with visual impairment. Conclusion. The leading causes of PVI in Suzhou were uncorrected refractive error and cataracts. The prevalence of PVI increased with females, older age, higher MAP, higher FBG, higher globulin, lower hemoglobin, lower BMI, and lower arterial stiffness index

    Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice

    No full text
    Dendritic cells (DCs) that orchestrate mucosal immunity have been studied in mice. Here we characterized human gut DC populations and defined their relationship to previously studied human and mouse DCs. CD103(+)Sirpα(-) DCs were related to human blood CD141(+) DCs and to mouse intestinal CD103(+)CD11b(-) DCs and expressed markers of cross-presenting DCs. CD103(+)Sirpα(+) DCs aligned with human blood CD1c(+) DCs and mouse intestinal CD103(+)CD11b(+) DCs and supported the induction of regulatory T cells. Both CD103(+) DC subsets induced the TH17 subset of helper T cells, while CD103(-)Sirpα(+) DCs induced the TH1 subset of helper T cells. Comparative analysis of transcriptomes revealed conserved transcriptional programs among CD103(+) DC subsets and identified a selective role for the transcriptional repressors Bcl-6 and Blimp-1 in the specification of CD103(+)CD11b(-) DCs and intestinal CD103(+)CD11b(+) DCs, respectively. Our results highlight evolutionarily conserved and divergent programming of intestinal DCs
    corecore