215 research outputs found

    Towards Efficient and Accurate Approximation: Tensor Decomposition Based on Randomized Block Krylov Iteration

    Full text link
    Efficient and accurate low-rank approximation (LRA) methods are of great significance for large-scale data analysis. Randomized tensor decompositions have emerged as powerful tools to meet this need, but most existing methods perform poorly in the presence of noise interference. Inspired by the remarkable performance of randomized block Krylov iteration (rBKI) in reducing the effect of tail singular values, this work designs an rBKI-based Tucker decomposition (rBKI-TK) for accurate approximation, together with a hierarchical tensor ring decomposition based on rBKI-TK for efficient compression of large-scale data. Besides, the error bound between the deterministic LRA and the randomized LRA is studied. Numerical experiences demonstrate the efficiency, accuracy and scalability of the proposed methods in both data compression and denoising

    Automatic Measurement and Monitoring Technology for Oil Well

    Get PDF
    Measurement technology of oil well develops and improves constantly at present. Reducing operation cost and energy consumption and improving efficiency of labor provides reliable technical guarantee for simplifying and optimizing ground process system. According to the needs of parametric measurement and monitoring for oil well, the paper combines with actual situation of the second factory in Dagang Oilfield, the second factory proposes the research on automatic measurement and monitoring technology for wireless oil well and application project, and scientific and information department in Dagang Oilfield ratifies the project. The paper studies automatic measurement and monitoring technology for wireless oil well, and evaluates the economic and social benefit

    Contactless Electrocardiogram Monitoring with Millimeter Wave Radar

    Full text link
    The electrocardiogram (ECG) has always been an important biomedical test to diagnose cardiovascular diseases. Current approaches for ECG monitoring are based on body attached electrodes leading to uncomfortable user experience. Therefore, contactless ECG monitoring has drawn tremendous attention, which however remains unsolved. In fact, cardiac electrical-mechanical activities are coupling in a well-coordinated pattern. In this paper, we achieve contactless ECG monitoring by breaking the boundary between the cardiac mechanical and electrical activity. Specifically, we develop a millimeter-wave radar system to contactlessly measure cardiac mechanical activity and reconstruct ECG without any contact in. To measure the cardiac mechanical activity comprehensively, we propose a series of signal processing algorithms to extract 4D cardiac motions from radio frequency (RF) signals. Furthermore, we design a deep neural network to solve the cardiac related domain transformation problem and achieve end-to-end reconstruction mapping from RF input to the ECG output. The experimental results show that our contactless ECG measurements achieve timing accuracy of cardiac electrical events with median error below 14ms and morphology accuracy with median Pearson-Correlation of 90% and median Root-Mean-Square-Error of 0.081mv compared to the groudtruth ECG. These results indicate that the system enables the potential of contactless, continuous and accurate ECG monitoring

    Detecting Digital Image Forgeries by Measuring Inconsistencies of Blocking Artifact

    Full text link
    Digital images can be forged easily with today’s widely available image processing software. In this paper, we describe a passive approach to detect digital forgeries by checking inconsistencies of blocking artifact. Given a digital image, we find that the blocking artifacts introduced during JPEG compression could be used as a “natural authentication code”. A blocking artifact measure is then proposed based on the estimated quantization table using the power spectrum of the DCT coefficient histogram. Experimental results also demonstrate the validity of the proposed approach. 1

    Recaptured photo detection using specularity distribution

    Full text link
    Detection of planar surfaces in a generic scene is difficult when the illumination is complex and less intense, and the surfaces have non-uniform colors (e.g., a movie poster). As a result, the specularity, if appears, is superimposed with the surface color pattern, and hence the observation of uniform specularity is no longer sufficient for identifying planar sur-faces in a generic scene as it does under a distant point light source. In this paper, we address the problem of planar sur-face recognition in a single generic-scene image. In partic-ular, we study the problem of recaptured photo recognition as an application in image forensics. We discover that the specularity of a recaptured photo is modulated by the micro-structure of the photo surface, and its spatial distribution can be used for differentiating recaptured photos from the origi-nal photos. We validate our findings in real images of generic scenes. Experimental results show that there is a distinguish-able feature of natural scene and recaptured images. Given the definition of specular ratio as the percentage of specularity in the overall measured intensity, the distribution of specular ra-tio image’s gradient of natural images is Laplacian-like while that of recaptured images is Rayleigh-like. Index Terms — Image forensics, recaptured photo detec-tion, dichromatic reflectance model, specularity 1

    AST:Adaptive Self-supervised Transformer for optical remote sensing representation

    Get PDF
    Due to the variation in spatial resolution and the diversity of object scales, the interpretation of optical remote sensing images is extremely challenging. Deep learning has become the mainstream solution to interpret such complex scenes. However, the explosion of deep learning model architectures has resulted in the need for hundreds of millions of remote sensing images for which labels are very costly or often unavailable publicly. This paper provides an in-depth analysis of the main reasons for this data thirst, i.e., (i) limited representational power for model learning, and (ii) underutilization of unlabeled remote sensing data. To overcome the above difficulties, we present a scalable and adaptive self-supervised Transformer (AST) for optical remote sensing image interpretation. By performing masked image modeling in pre-training, the proposed AST releases the rich supervision signals in massive unlabeled remote sensing data and learns useful multi-scale semantics. Specifically, a cross-scale Transformer architecture is designed to collaboratively learn global dependencies and local details by introducing a pyramid structure, to facilitate multi-granular feature interactions and generate scale-invariant representations. Furthermore, a masking token strategy relying on correlation mapping is proposed to achieve adaptive masking of partial patches without affecting key structures, which enhances the understanding of visually important regions. Extensive experiments on various optical remote sensing interpretation tasks show that AST has good generalization capability and competitiveness.</p

    Beyond Unfolding: Exact Recovery of Latent Convex Tensor Decomposition under Reshuffling

    Full text link
    Exact recovery of tensor decomposition (TD) methods is a desirable property in both unsupervised learning and scientific data analysis. The numerical defects of TD methods, however, limit their practical applications on real-world data. As an alternative, convex tensor decomposition (CTD) was proposed to alleviate these problems, but its exact-recovery property is not properly addressed so far. To this end, we focus on latent convex tensor decomposition (LCTD), a practically widely-used CTD model, and rigorously prove a sufficient condition for its exact-recovery property. Furthermore, we show that such property can be also achieved by a more general model than LCTD. In the new model, we generalize the classic tensor (un-)folding into reshuffling operation, a more flexible mapping to relocate the entries of the matrix into a tensor. Armed with the reshuffling operations and exact-recovery property, we explore a totally novel application for (generalized) LCTD, i.e., image steganography. Experimental results on synthetic data validate our theory, and results on image steganography show that our method outperforms the state-of-the-art methods.Comment: AAAI-202

    Towards Domain-Independent and Real-Time Gesture Recognition Using mmWave Signal

    Full text link
    Human gesture recognition using millimeter wave (mmWave) signals provides attractive applications including smart home and in-car interface. While existing works achieve promising performance under controlled settings, practical applications are still limited due to the need of intensive data collection, extra training efforts when adapting to new domains (i.e. environments, persons and locations) and poor performance for real-time recognition. In this paper, we propose DI-Gesture, a domain-independent and real-time mmWave gesture recognition system. Specifically, we first derive the signal variation corresponding to human gestures with spatial-temporal processing. To enhance the robustness of the system and reduce data collecting efforts, we design a data augmentation framework based on the correlation between signal patterns and gesture variations. Furthermore, we propose a dynamic window mechanism to perform gesture segmentation automatically and accurately, thus enable real-time recognition. Finally, we build a lightweight neural network to extract spatial-temporal information from the data for gesture classification. Extensive experimental results show DI-Gesture achieves an average accuracy of 97.92%, 99.18% and 98.76% for new users, environments and locations, respectively. In real-time scenario, the accuracy of DI-Gesutre reaches over 97% with average inference time of 2.87ms, which demonstrates the superior robustness and effectiveness of our system.Comment: The paper is submitted to the journal of IEEE Transactions on Mobile Computing. And it is still under revie
    corecore