83 research outputs found

    Evaluation of management strategies for the operation of high-speed railways in China

    Get PDF
    High-Speed Train (HST) operations have recently been introduced in rail passenger transportation markets worldwide. Although the technologies for such operations have levelled at speeds of around 300 km/h, the operating parameters to be adopted in each application will differ from country to country. The operating environment will be one of the crucial success factors for the implementation of HST operations in China. This paper compares three different management/ownership models which might be used in China. The paper analyzes the characteristics of each model and proposes an optimal plan of an operational system to develop HST operations in China by using a hierarchy goals achievement matrix approach

    Epidemiological impact of waning immunization on a vaccinated population

    Get PDF
    This is an epidemiological SIRV model based study that is de- signed to analyze the impact of vaccination in containing infection spread, in a 4-tiered population compartment comprised of susceptible, infected, recov- ered and vaccinated agents. While many models assume a lifelong protection through vaccination, we focus on the impact of waning immunization due to conversion of vaccinated and recovered agents back to susceptible ones. Two asymptotic states exist, the \disease-free equilibrium" and the \endemic equi- librium" and we express the transitions between these states as function of the vaccination and conversion rates and using the basic reproduction number. We nd that the vaccination of newborns and adults have dierent consequences on controlling an epidemic. Also, a decaying disease protection within the re- covered sub-population is not sucient to trigger an epidemic on the linear level. We perform simulations for a parameter set modelling a disease with waning immunization like pertussis. For a diusively coupled population, a transition to the endemic state can proceed via the propagation of a traveling infection wave, described successfully within a Fisher-Kolmogorov framework

    Rich dynamics in a predator–prey model with both noise and periodic force

    No full text
    A spatial version of the predator–prey model with Holling III functional response, which includes some important factors such as external periodic forces, noise, and diffusion processes is investigated. For the model only with diffusion, it exhibits spiral waves in the two-dimensional space. However, combined with noise, it has the feature of chaotic patterns. Moreover, the oscillations become more obvious when the noise intensity is increased. Furthermore, the spatially extended system with external periodic forces and noise exhibits a resonant pattern and frequency-locking phenomena. These results may help us to understand the effects arising from the undeniable susceptibility to random fluctuations in the real ecosystems.

    Influence of infection rate and migration on extinction of disease in spatial epidemics

    No full text
    Extinction of disease can be explained by the patterns of epidemic spreading, yet the underlying causes of extinction are far from being well understood. To reveal a mechanism of disease extinction, a cellular automata model with both birth, death rate and migration is presented. We find that, in single patch, when the infection rate is small or large enough, the disease will disappear for a long time. When the invasion form is in the coexistence of stable spiral and turbulent wave state, the disease will persist. Also, we find that the migration has dual effects on the epidemic spreading. On one hand, in the extinction region of single patch, if the migration rate is large enough, there is a phase transition from the disease free to endemic state in two patches. On the other hand, migration will induce extinction in the regime, which can ensure the persistence of the disease in single patch, due to emergence of anti-phase synchrony. The results obtained well reveal the effect of infection rate and migration on the extinction of the disease, which enriches the finding in the filed of epidemiology and may provide some new ideas to control the disease in the real world.

    Intelligent monitoring and recognition of the short-circuiting gas-metal arc welding process

    Get PDF
    MOE Key Lab of Liquid Structure and Heredity of Materials, Institute of Materials Joining, Shangdong University, 73 Jingshi Road, Jinan 250061, People's Republic of China This paper introduces an intelligent system for monitoring and recognition of process disturbances during short-circuiting gas-metal arc welding. It is based on the measured and statistically processed data of welding electrical parameters. A 12-dimensional array of process features is designed to describe various welding conditions and is employed as input vector of the intelligent system. Three methods, such as fuzzy c-means, neural network and fuzzy Kohonen clustering network are used to conduct process monitoring and automatic recognition. The correct recognition rates of these three methods are compared

    Detection of Soil Total Nitrogen by Vis-SWNIR Spectroscopy

    No full text

    Influence of infection rate and migration on extinction of disease in spatial epidemics

    No full text
    Extinction of disease can be explained by the patterns of epidemic spreading, yet the underlying causes of extinction are far from being well understood. To reveal a mechanism of disease extinction, a cellular automata model with both birth, death rate and migration is presented. We find that, in single patch, when the infection rate is small or large enough, the disease will disappear for a long time. When the invasion form is in the coexistence of stable spiral and turbulent wave state, the disease will persist. Also, we find that the migration has dual effects on the epidemic spreading. On one hand, in the extinction region of single patch, if the migration rate is large enough, there is a phase transition from the disease free to endemic state in two patches. On the other hand, migration will induce extinction in the regime, which can ensure the persistence of the disease in single patch, due to emergence of anti-phase synchrony. The results obtained well reveal the effect of infection rate and migration on the extinction of the disease, which enriches the finding in the filed of epidemiology and may provide some new ideas to control the disease in the real world
    corecore