9 research outputs found
Effect of heating rate on recrystallization of twin roll cast aluminum
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 39A(1): pp. 165-170.The effect of heating rate on precipitation and recrystallization behavior in twin roll cast (TRC)
AA3105 has been investigated by three different means: conventional air furnace, controlled
infrared, and lead bath heating. Experimental results showed that as-recrystallized grain size
decreased and became more equiaxed as the annealing heating rate increased. These results were
explained via time-temperature-transformation (TTT) curves for both dispersoid precipitation
and recrystallization. With the faster heating rate, recrystallization could occur before precipitation
of Mn present in the unhomogenized TRC samples. At a heating rate of 50 degree C/s the
material underwent grain growth after recrystallization at 500 degree C. No sign of grain growth was
observed in materials annealed with lower heating rates, 3 degrees C/s, 0.5 degree C/s, and 0.01 degree C/s due to
greater dispersoid precipitation
Negative Roles of a Novel Nitrogen Metabolite Repression-Related Gene, TAR1, in Laccase Production and Nitrate Utilization by the Basidiomycete Cryptococcus neoformansâ–¿
The multicopper oxidase laccase is widespread in fungi and has great industrial importance. One puzzle regarding laccase production in the basidiomycetous yeast Cryptococcus neoformans is that it is inhibited by high temperature (e.g., 37°C). In this paper, we report identification of a nitrogen metabolite repression-related gene, TAR1, which is responsible for laccase repression. Disruption of TAR1 results in a significant increase in the level of LAC1 mRNA at 37°C. The putative protein Tar1 shares a moderate level of similarity with the nitrogen metabolite repressors Nmr1 and NmrA from Neurospora crassa and Aspergillus nidulans, respectively. Likewise, Tar1 has a negative role in the utilization of nitrate. Furthermore, the structure of Tar1 is unique. Tar1 lacks the long C-terminal region of Nmr1 and NmrA. It contains the canonical Rossmann fold motif, GlyXXGlyXXGly, whereas Nmr1 and NmrA have variable residues at the Gly positions. Interestingly, the promoter region of TAR1 contains three TTC/GAA repeats which are likely the heat shock factor (Hsf) binding sites, implying that Hsf has a role in laccase inhibition. TAR1 mediation of temperature-associated repression of LAC1 suggests a novel mechanism of laccase regulation and a new function for Nmr proteins. Our work may be helpful for industry in terms of promotion of laccase activity
Quantitative Evaluation of the Crop Yield, Soil-Available Phosphorus, and Total Phosphorus Leaching Caused by Phosphorus Fertilization: A Meta-Analysis
Phosphorus (P) leaching from excessive P application is the primary pathway of P losses in agricultural soils. Different P fertilizer practices have mixed effects on P leaching. We conducted a meta-analysis of the relevant literature regarding the response of crop yields, soil-available P (AP), and total P (TP) leaching to reduced P input (RP) and an inorganic-organic combination fertilizer (NPKM) for different agricultural land-use types. Compared to conventional P application (CP), RP (10~90% reduction) did not reduce crop yields in vegetable fields (experiments were 1~4 years) but significantly reduced cereal yields by 4.57%. Compared to chemical fertilizer (NPK), NPKM significantly increased cereal yields by 12.73%. Compared to CP, RP significantly reduced AP at 0~60 cm in vegetable and cereal fields. The greatest reduction occurred at 20~40 cm in vegetable fields (40.29%) and 0~20 cm in cereal fields (34.45%). Compared to NPK, NPKM significantly increased the AP at 0~60 cm in vegetable fields, with the greatest increase (52.44%) at 20~40 cm. The AP at 0~40 cm in cereal fields significantly increased under the NPKM treatment, with the greatest increase at 0~20 cm (76.72%). Compared to CP, RP significantly decreased TP leaching by 16.02% and 31.50% in vegetable and cereal fields, respectively. Compared to NPK, NPKM significantly increased TP leaching in vegetable fields (30.43%); no significant difference in leaching occurred in cereal fields. P leaching, in response to RP, was influenced by the P amounts applied (34.49%); soil organic matter (14.49%); and TP (12.12%). P leaching in response to NPKM was influenced by multiple factors: rainfall (16.05%); soil organic matter (12.37%); soil bulk density (12.07%); TP (11.65%); pH (11.41%). NPKM was more beneficial for improving yields in cereal fields with low soil fertility and lower P-leaching risks
N-glycans released from glycoproteins using a commercial kit and comprehensively analyzed with a hypothetical database
The glycosylation of proteins is responsible for their structural and functional roles in many cellular activities. This work describes a strategy that combines an efficient release, labeling and liquid chromatography-mass spectral analysis with the use of a comprehensive database to analyze N-glycans. The analytical method described relies on a recently commercialized kit in which quick deglycosylation is followed by rapid labeling and cleanup of labeled glycans. This greatly improves the separation, mass spectrometry (MS) analysis and fluorescence detection of N-glycans. A hypothetical database, constructed using GlycResoft, provides all compositional possibilities of N-glycans based on the common sugar residues found in N-glycans. In the initial version this database contains >8,700 N-glycans, and is compatible with MS instrument software and expandable. N-glycans from four different well-studied glycoproteins were analyzed by this strategy. The results provided much more accurate and comprehensive data than had been previously reported. This strategy was then used to analyze the N-glycans present on the membrane glycoproteins of gastric carcinoma cells with different degrees of differentiation. Accurate and comprehensive N-glycan data from those cells was obtained efficiently and their differences compared corresponding to their differentiation states. Thus, the novel strategy developed greatly improves accuracy, efficiency and comprehensiveness of N-glycan analysis
Controllability of Graphene Oxide Doxorubicin Loading Capacity Based on Density Functional Theory
Graphene can be used as a drug carrier of doxorubicin (DOX) to reduce the side effects of doxorubicin. However, there is limited research on the surface chemical modifications and biological effects of graphene oxide (GO). Therefore, it is necessary to explore the DOX affinity of different oxygen-containing functional groups in the graphene system. We constructed graphene system models and studied the structure and distribution of epoxy and hydroxyl groups on the carbon surface. Based on molecular dynamics simulations and density functional theory (DFT), we investigated the interaction between DOX and either pristine graphene or GO with different ratios of oxygen-containing groups. The hydroxyl groups exhibited a stronger affinity for DOX than the epoxy groups. Therefore, the DOX loading capacity of graphene systems can be adjusted by increasing the ratio of hydroxyl to epoxy groups on the carbon surface
Ligand-mediate exciton allocation enables efficient cluster-based white light-emitting diodes via single and heavy doping
Abstract Despite potential in high-resolution and low-cost displays and lighting, multi-doping structures and low concentrations (<1%) limit repeatability and stability of single-emissive-layer white light-emitting devices. Herein, we report a singly doped white-emitting system of blue thermally activated delayed fluorescence host matrix (CzAcSF) doped by yellow Cu4I4 cluster ([tBCzDppy]2Cu4I4). CzAcSF:x% [tBCzDppy]2Cu4I4 films realize photo- and electro-luminescence colors from cool white to warm white at x = 20–40. The external quantum efficiency of 23.5% was achieved at x = 30, indicating the record-high efficiency among solution-processed analogs and the largest doping concentration among efficient white light-emitting devices. It shows that di(tert-butyl)carbazole moieties in [tBCzDppy]2Cu4I4 provide high-lying excited energy levels at~2.6 eV to mediate energy transfer from CzAcSF (2.9 eV) to coordinated Cu4I4 (2.2 eV). Our results demonstrate the antenna effect of ligands on optimizing charge and energy transfer in organic-cluster systems and superiority of white cluster light-emitting diodes in practical applications
Bias Evaluation of the Accuracy of Two Extraoral Scanners and an Intraoral Scanner Based on ADA Standards
The spread and application of computer-aided design/computer-aided manufacturing (CAD/CAM) technology have contributed to the rapid development of digitalization in dentistry. The accuracy of scan results is closely related to the devising subsequent treatment plans and outcomes. Professional standards for evaluating scanners are specified in the American National Standard/American Dental Association Standard 132 (ANSI/ADA No. 132). The aims of this study were to use the three samples mentioned in ANSI/ADA No. 132 and evaluate the accuracy and reproducibility of two extraoral scanners and an intraoral scanner based on the inspection standards recommended by ANSI/ADA No. 132. In this study, two trained operators used two extraoral scanners (E4, 3Shape, Denmark & SHINING DS100+, Shining, China) and an intraoral scanner (TRIOS SERIES3, 3Shape, Denmark) to perform 30 scans of each of the three samples at a temperature of 25±2°C and export standard tessellation language files and used reverse engineering software to perform measurements and iterative nearest point matching experiments. The measured values obtained were compared with the reference values measured by a coordinate measuring machine (NC8107, Leader Metrology, USA). We performed a normal distribution test (Shapiro-Wilk test), the nonparametric Kruskal-Wallis test, and an independent-samples t-test to analyze the reproducibility of each scan for different models. The experimental results indicate that the trueness and precision of the two extraoral scanners and the intraoral scanner had a slight mean deviation. The trueness and precision of the three scanners on the curved surface and groove areas are poor. The accuracy and reproducibility of E4 outperformed SHINING and TRIOS. The iterative closest point matching experiment also showed good matching results. The two extraoral scanners and the intraoral scanner in this study can meet the basic clinical requirements in terms of accuracy, and we hope that digital technology will be more widely used in dentistry in the future