1,590 research outputs found

    Observation of coherent oscillation in single-passage Landau-Zener transitions

    Get PDF
    Landau-Zener transition (LZT) has been explored in a variety of physical systems for coherent population transfer between different quantum states. In recent years, there have been various proposals for applying LZT to quantum information processing because when compared to the methods using ac pulse for coherent population transfer, protocols based on LZT are less sensitive to timing errors. However, the effect of finite range of qubit energy available to LZT based state control operations has not been thoroughly examined. In this work, we show that using the well-known Landau-Zener formula in the vicinity of an avoided energy-level crossing will cause considerable errors due to coherent oscillation of the transition probability in a single-passage LZT experiment. The data agree well with the numerical simulations which take the transient dynamics of LZT into account. These results not only provide a closer view on the issue of finite-time LZT but also shed light on its effects on the quantum state manipulation.Comment: 10 pages,5 figure

    Molecular Dynamic Simulation to Explore the Molecular Basis of Btk-PH Domain Interaction with Ins(1,3,4,5)P4

    Get PDF
    Bruton’s tyrosine kinase contains a pleckstrin homology domain, and it specifically binds inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), which is involved in the maturation of B cells. In this paper, we studied 12 systems including the wild type and 11 mutants, K12R, S14F, K19E, R28C/H, E41K, L11P, F25S, Y40N, and K12R-R28C/H, to investigate any change in the ligand binding site of each mutant. Molecular dynamics simulations combined with the method of molecular mechanics/Poisson-Boltzmann solvent-accessible surface area have been applied to the twelve systems, and reasonable mutant structures and their binding free energies have been obtained as criteria in the final classification. As a result, five structures, K12R, K19E, R28C/H, and E41K mutants, were classified as “functional mutations,” whereas L11P, S14F, F25S, and Y40N were grouped into “folding mutations.” This rigorous study of the binding affinity of each of the mutants and their classification provides some new insights into the biological function of the Btk-PH domain and related mutation-causing diseases

    Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system

    Get PDF
    The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching rate. Our results supply the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena.Comment: Title changed, authors added, and some experimental data update

    Observation of Majorana fermions with spin selective Andreev reflection in the vortex of topological superconductor

    Get PDF
    Majorana fermion (MF) whose antiparticle is itself has been predicted in condensed matter systems. Signatures of the MFs have been reported as zero energy modes in various systems. More definitive evidences are highly desired to verify the existence of the MF. Very recently, theory has predicted MFs to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MFs. Here we report the first observation of the SSAR from MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which topological superconductivity was previously established. By using spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we show that the zero-bias peak of the tunneling differential conductance at the vortex center is substantially higher when the tip polarization and the external magnetic field are parallel than anti-parallel to each other. Such strong spin dependence of the tunneling is absent away from the vortex center, or in a conventional superconductor. The observed spin dependent tunneling effect is a direct evidence for the SSAR from MFs, fully consistent with theoretical analyses. Our work provides definitive evidences of MFs and will stimulate the MFs research on their novel physical properties, hence a step towards their statistics and application in quantum computing.Comment: 4 figures 15 page

    The Clinicopathological Significance and Correlative Signaling Pathways of an Autophagy-Related Gene, Ambra1, in Breast Cancer: a Study of 25 Microarray RNA-Seq Datasets and in-House Gene Silencing

    Get PDF
    Background/Aims: The activating molecule in Beclin1-regulated autophagy (Ambra1) has been observed to be over-expressed in several cancers, but the clinical contribution of Ambra1 in breast cancer (BC) remains unknown. Hence, in this study, we conducted a comprehensive investigation into the expression, biological role, and underlying functional mechanism of Ambra1 in BC. Methods: Microarray and RNA-seq datasets providing Ambra1 expression data were obtained from Gene Expression Omnibus (GEO), ArrayExpress, Oncomine, and The Cancer Genome Atlas (TCGA). Both standard mean deviation (SMD) and summary receiver operating characteristic methods were employed to assess Ambra1 expression in BC. We then silenced Ambra1 in MDA-MB-231 cells and performed in vitro experiments to explore the biological effects of Ambra1 on BC cells. Furthermore, differentially expressed genes (DEGs) after Ambra1 knock-down were profiled with a microarray and overlapped with the genes correlated with Ambra1 from Multi Experiment Matrix (MEM) and genes similar to Ambra1 from Gene Expression Profiling Interactive Analysis. These overlapping genes were collected for further bioinformatics analyses to investigate the underlying molecular mechanism of Ambra1 in BC. Results: A total of 25 microarray and RNA-seq datasets involving 2460 breast cancer samples were included. The pooled results demonstrated that Ambra1 was markedly up-regulated in BC tissues (SMD=0.39, 95% CI=0.15–0.63; P=0.002), and the Ambra1 level was also significantly related to the progression of BC, especially metastasis status (P=0.004). In vitro experiments suggested that the proliferation of MDA-MB-231 cells transfected with Ambra1 short hairpin RNA (sh-RNA 2450) showed a decreasing trend at 48 h compared with the control (CK) group. However, apoptosis was similar in cells transfected with Ambra1 sh-RNAs and in the CK cells. Furthermore, we performed a microarray-based comparison of genes after Ambra1 knock-down. The 828 DEGs from microarray analysis were intersected with 4266 Ambra1 co-expressed genes from MEM. Eventually, the overlapped 183 genes were found to be enriched in several well-known cancer-related pathways, including the MAPK signaling pathway, chronic myeloid leukemia pathway, and VEGF signaling pathway. Conclusion: These results indicate that the level of Ambra1 up-regulation is clearly related to tumorigenesis and progression of BC, probably via influencing several vital pathways. However, this hypothesis needs to be validated with more in-depth experiments in the future

    Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    Get PDF
    Zhanrong Li,1,* Xianghua Wu,1,* Jingguo Li,2 Lin Yao,1 Limei Sun,1 Yingying Shi,1 Wenxin Zhang,1 Jianxian Lin,1 Dan Liang,1 Yongping Li1 1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, 2School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China*These authors contributed equally to this workBackground: Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved.Methods: Celastrol-loaded poly(ethylene glycol)-block-poly(ε-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma.Results: CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 µg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 µg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice.Conclusion: CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in SO-Rb 50 cells, which may be related to the increased Bax/Bcl-2 ratio and the inhibition of NF-κB. CNPs may represent a potential alternative treatment for retinoblastoma.Keywords: apoptosis, SO-Rb 50 cells, poly(ethylene glycol)-block-poly(ε-caprolactone), nanopolymeric micelles, celastrol nanoparticles&nbsp

    Eocene magmatic processes and crustal thickening in southern Tibet : insights from strongly fractionated ca. 43 Ma granites in the western Gangdese Batholith

    Get PDF
    This research was financially co-supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB03010301), the National Key Project for Basic Research of China (Project 2015CB452604), the Chinese National Natural Science Foundation (41225006, 41472061, and 40973026), the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (China University of Geosciences). The first author thanks the China Scholarship Council (201306400021).This study reports zircon U-Pb age and Hf isotope, whole-rock major and trace element, and Sr-Nd-Pb-Hf isotope data for the Dajia pluton, western Gangdese Batholith, in southern Tibet. These data indicate that the pluton consists of moderately (Group 1) and strongly (Group 2) fractionated granites that were emplaced synchronously at ca. 43 Ma. The Group 1 samples have SiO2 contents of 69−72 wt.% and vary in terms of the differentiation index (DI = 84−93). These rocks are depleted in Ba, Nb, Sr, P, and Ti, with moderate negative Eu anomalies, and display low heavy rare earth elements (HREEs) and Y abundances. The Group 2 samples are characterized by high SiO2 (75−78 wt.%) and DI (95−97); significantly negative Eu anomalies; marked concave-upward middle REE (Gd-Ho) patterns; and Ba, Sr, P, and Ti anomalies that are significantly more negative than those of the Group 1 samples. The Group 1 samples have whole-rock εNd(t) (-5.9 to -6.0), εHf(t) (-4.0 to -4.5), and zircon εHf(t) (-6.0 to + 5.8) values identical to those of the Group 2 samples [εNd(t) = -5.7 to -6.7, εHf(t) = -3.5 to -2.9, and zircon εHf(t) = -2.0 to + 4.2], as well as similar initial Pb isotopic compositions. These data indicate that the two groups were derived from a common source region with garnet as a residual mineral phase. The Group 1 samples were most likely derived from partial melting of garnet-bearing amphibolite (rather than eclogite) within the juvenile southern Lhasa crust and mixed with the enriched components from the subducting ancient Indian continental crust and/or the ancient central Lhasa basement. The Group 2 samples are interpreted as the products of extensive fractional crystallization (plagioclase, K-feldspar, biotite, apatite, allanite, titanite, monazite, and ilmenite) of the melts represented by the Group 1 samples. Low HREEs and Y abundances of the Dajia pluton, together with the presence of strongly fractionated granites (Group 2) identified for the first time in the Gangdese Batholith, indicate that the crust beneath the Dajia region had already been thickened by ca. 43 Ma. High whole-rock zircon saturation temperatures (815°C−869°C) of the Group 1 samples and the other ca. 43 Ma coeval magmatism documented both in the Gangdese Batholith and in the Tethyan Himalaya can be best interpreted as the final consequences of the magmatic responses to the Neo-Tethyan oceanic slab breakoff.PostprintPeer reviewe
    corecore