1,441 research outputs found

    Effective scraping in a scraped surface heat exchanger: some fluid flow analysis

    Get PDF
    An outline of mathematical models that have been used to understand the behaviour of scraped surface heat exchangers is presented. In particular the problem of the wear of the blades is considered. A simple model, exploiting known behaviour of viscous flow in corners and in wedges, and accounting for the forces on the blade is derived and solutions generated. The results shows initial rapid wear but that the wear rate goes to zero

    Experimental investigation on shock wave diffraction over sharp and curved splitters

    Get PDF
    Shock wave diffraction occurs when a normal travelling wave passes through a sudden area expansion. Turbulent, compressible, and vortical are the characterising adjectives that describe the flow features, which are slowly smeared out due to the dissipative nature of turbulence. The study of this phenomenon provides insight into several flow structures such as shear layer formation, vortex development, and vortex/shock interaction whose applications include noise control, propulsion or wing aerodynamics. A large amount of research has been carried out in the analysis of shock wave diffraction mainly around sharp wedges, but only few studies have considered rounded corners. This project has the aim to examine and compare the flow features which develop around three different geometries, ramp, symmetric and rounded, with experimental incident shock Mach numbers of 1.31 and 1.59, and Reynolds numbers of 1.08×106 and 1.68×106. Schlieren photography is used to obtain qualitative information about the evolution of the flow field. The results show that ramp and symmetrical wedges with a tip angle of 172° behave in the same manner, which exhibit clear dissimilarities with a curved corner. The flow field evolves more rapidly for a higher incoming Mach number which is also responsible for the development of stronger structures

    Very strong intrinsic supercurrent carrying ability and vortex avalanches in (Ba,K)Fe2As2 superconducting single crystals

    Get PDF
    We report that single crystals of (Ba,K)Fe2As2 with Tc = 32 K have a pinning potential, U0, as high as 10^4 K, with U0 showing very little field depend-ence. In addition, the (Ba,K)Fe2As2 single crystals become isotropic at low temperatures and high magnetic fields, resulting in a very rigid vortex lattice, even in fields very close to Hc2. The rigid vortices in the two dimensional (Ba,K)Fe2As2 distinguish this compound from 2D high Tc cuprate superconductors with 2D vortices, and make it being capable of cearrying very high critical current.Flux jumping due to high Jc was also observed in large samples at low temperatures.Comment: 4 pages, 7 figures. submitte

    Acetylsalicylic acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators

    Get PDF
    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation

    Model study for the nonequlibrium magnetic domain structure during the growth of nanostructured ultrathin films

    Full text link
    The nonequilibrium magnetic domain structure of growing ultrathin ferromagnetic films with a realistic atomic structure is studied as a function of coverage and temperature. We apply a kinetic Monte Carlo method to a micromagnetic model describing the transition from superparamagnetic islands at low coverages to a closed ferromagnetic film. The magnetic relaxation and the island growth happen simultaneously. Near the percolation threshold a metastable magnetic domain structure is obtained with an average domain area ranging between the area of individual magnetic islands and the area of the large domains observed for thicker ferromagnetic films. We conclude that this micro-domain structure is controlled and stabilized by the nonuniform atomic nanostructure of the ultrathin film, causing a random interaction between magnetic islands with varying sizes and shapes. The average domain area and domain roughness are determined. A maximum of the domain area and a minimum of the domain roughness are obtained as a function of the temperature.Comment: 19 pages, 4 Postscript figures; to be published in J. Magn. Magn. Mater., accepted (2001); completely revised manuscrip

    Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model

    Full text link
    We have studied electron correlations in the doped two-dimensional (2D) Hubbard model by using the coupled-cluster method (CCM) to investigate whether or not the method can be applied to correct the independent particle approximations actually used in ab-initio band calculations. The double excitation version of the CCM, implemented using the approximate coupled pair (ACP) method, account for most of the correlation energies of the 2D Hubbard model in the weak (U/t1U/t \simeq 1) and the intermediate U/tU/t regions (U/t4U/t \simeq 4). The error is always less than 1% there. The ACP approximation gets less accurate for large U/tU/t (U/t8U/t \simeq 8) and/or near half-filling. Further incorporation of electron correlation effects is necessary in this region. The accuracy does not depend on the system size and the gap between the lowest unoccupied level and the highest occupied level due to the finite size effect. Hence, the CCM may be favorably applied to ab-initio band calculations on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure

    Facilitating the analysis of a UK national blood service supply chain using distributed simulation

    Get PDF
    In an attempt to investigate blood unit ordering policies, researchers have created a discrete-event model of the UK National Blood Service (NBS) supply chain in the Southampton area of the UK. The model has been created using Simul8, a commercial-off-the-shelf discrete-event simulation package (CSP). However, as more hospitals were added to the model, it was discovered that the length of time needed to perform a single simulation severely increased. It has been claimed that distributed simulation, a technique that uses the resources of many computers to execute a simulation model, can reduce simulation runtime. Further, an emerging standardized approach exists that supports distributed simulation with CSPs. These CSP Interoperability (CSPI) standards are compatible with the IEEE 1516 standard The High Level Architecture, the defacto interoperability standard for distributed simulation. To investigate if distributed simulation can reduce the execution time of NBS supply chain simulation, this paper presents experiences of creating a distributed version of the CSP Simul8 according to the CSPI/HLA standards. It shows that the distributed version of the simulation does indeed run faster when the model reaches a certain size. Further, we argue that understanding the relationship of model features is key to performance. This is illustrated by experimentation with two different protocols implementations (using Time Advance Request (TAR) and Next Event Request (NER)). Our contribution is therefore the demonstration that distributed simulation is a useful technique in the timely execution of supply chains of this type and that careful analysis of model features can further increase performance
    corecore