1,564 research outputs found

    4-[1-(Hydroxy­imino)ethyl]-N-(4-nitro­benzyl­idene)aniline

    Get PDF
    In the title compound, C15H13N3O3, the dihedral angle formed by the two benzene rings is 44.23 (2)°. The crystal structure is stabilized by aromatic π–π stacking inter­actions, with centroid-centroid distances of 3.825 (3) and 3.870 (4) Å between the aniline and the nitro­benzene rings of neighbouring mol­ecules, respectively. In addition, the stacked mol­ecules exhibit inter­molecular C—H⋯N and C—H⋯O inter­actions

    5,5′-Dimeth­oxy-2,2′-[(pentane-1,5-diyl­dioxy)bis­(nitrilo­methyl­idyne)]diphenol

    Get PDF
    The mol­ecule of the title compound, C21H26N2O6, which lies across a crystallographic inversion centre, crystallizes with two unique half-molecules in the symmetric unit and adopts a linear configuration and the imino group is coplanar with the aromatic ring, making a dihedral angle of 3.26 (3)°. Strong intra­molecular O—H⋯N and weak inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and weak inter­molecular π–π stacking inter­actions [centroid–centroid distance = 4.419 (2) Å]establish an infinite three-dimensional supra­molecular structure

    2,2′-[1,1′-(Propane-1,3-diyldioxy­dinitrilo)diethyl­idyne]di-1-naphthol

    Get PDF
    The mol­ecule of the title compound, C27H26N2O4, lies across a crystallographic inversion centre and adopts an l-shaped configuration. Within the mol­ecule, the two naphthalene units are approximately perpendicular, making a dihedral angle of 80.24 (5)°. The two intramolecular O—H⋯N hydrogen bonds, generate S(6) ring motifs. In the crystal structure, every mol­ecule links five other mol­ecules into an infinite cross-linked layered supra­molecular structure via inter­molecular C—H⋯O hydrogen bonds, C—H⋯π inter­actions and π–π stacking inter­actions [centroid–centroid distance = 3.956 (4) Å]

    Comparison of outcomes between immediate implant-based and autologous reconstruction: 15-year, single-center experience in a propensity score-matched Chinese cohort

    Get PDF
    Objective: The number of immediate breast reconstruction (IBR) procedures has been increasing in China. This study aimed to investigate the oncological safety of IBR, and to compare the survival and surgical outcomes between implant-based and autologous reconstruction. Methods: Data from patients diagnosed with invasive breast cancer who underwent immediate total breast reconstruction between 2001 and 2016 were retrospectively reviewed. Long-term breast cancer-specific survival (BCSS), disease-free survival (DFS), and locoregional recurrence-free survival (LRFS) were evaluated. Patient satisfaction with the breast was compared between the implant-based and autologous groups. BCSS, DFS, and LRFS were compared between groups after propensity score matching (PSM). Results: A total of 784 IBR procedures were identified, of which 584 were performed on patients with invasive breast cancer (implant-based, n = 288; autologous, n = 296). With a median follow-up of 71.3 months, the 10-year estimates of BCSS, DFS, and LRFS were 88.9% [95% confidence interval (CI) (85.1%–93.0%)], 79.6% [95% CI (74.7%–84.8%)], and 94.0% [95% CI (90.3%–97.8%)], respectively. A total of 124 patients completed the Breast-Q questionnaire, and no statistically significant differences were noted between groups (P = 0.823). After PSM with 27 variables, no statistically significant differences in BCSS, DFS, and LRFS were found between the implant-based (n = 177) and autologous (n = 177) groups. Further stratification according to staging, histological grade, lymph node status, and lymph-venous invasion status revealed no significant survival differences between groups. Conclusions: Both immediate implant-based and autologous reconstruction were reasonable choices with similar long-term oncological outcomes and patient-reported satisfaction among patients with invasive breast cancer in China

    Architecture and key technologies of coalmine underground vision computing

    Get PDF
    It has always been a common demand to stay away from the harsh environment with narrow space, numerous devices, complex operation process, and hidden hazards, and realize intelligent unmanned mining in the coal industry. To achieve this goal, it is very necessary for us to develop an effective theory of vision computing for underground coalmine applications. Its main task is to build effective models or frameworks for perceiving, describing, recognizing and understanding the environment of underground coalmine, and let intelligent equipment get 3D environment information in coalmine from images or videos. To effectively develop this theory and make it better for intelligent development of coalmine, this paper first analyzed the similarities and differences about computer vision and visual computing in coalmine, and proposed its composition architecture. And then, this paper introduced in detail the key technologies involved in visual computing in coalmine including visual perception and light field computing, feature extraction and feature description, semantic learning and vision understanding, 3D vision reconstruction, and sense computing integration and edge intelligence, which is followed by typical application cases of visual computing in coalmines. Finally, the development trend and prospect of underground visual computing in coalmine was given. In this section, this paper focused on concluding the key challenges and introducing two valuable applications including coalmine Augmented Reality/Mixed Reality and parallel intelligent mining. With the breakthrough of underground vision computing, it will play a more and more important role in the intelligent development of coal mines

    Experimental measurement-device-independent quantum digital signatures over a metropolitan network

    Get PDF
    Quantum digital signatures (QDS) provide a means for signing electronic communications with informationtheoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here, we exploit a measurement-device-independent (MDI) quantum network, over a 200-square-kilometer metropolitan area, to perform a field test of a three-party measurement-device-independent quantum digital signature (MDI-QDS) scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 1E-7. Remarkably, our work demonstrates the feasibility of MDI-QDS for practical applications.Comment: 5 pages, 1 figure, 2 tables, supplemental materials included as ancillary fil
    corecore