106,219 research outputs found

    Multiplicity one theorems: the Archimedean case

    Full text link
    Let GG be one of the classical Lie groups \GL_{n+1}(\R), \GL_{n+1}(\C), \oU(p,q+1), \oO(p,q+1), \oO_{n+1}(\C), \SO(p,q+1), \SO_{n+1}(\C), and let GG' be respectively the subgroup \GL_{n}(\R), \GL_{n}(\C), \oU(p,q), \oO(p,q), \oO_n(\C), \SO(p,q), \SO_n(\C), embedded in GG in the standard way. We show that every irreducible Casselman-Wallach representation of GG' occurs with multiplicity at most one in every irreducible Casselman-Wallach representation of GG. Similar results are proved for the Jacobi groups \GL_{n}(\R)\ltimes \oH_{2n+1}(\R), \GL_{n}(\C)\ltimes \oH_{2n+1}(\C), \oU(p,q)\ltimes \oH_{2p+2q+1}(\R), \Sp_{2n}(\R)\ltimes \oH_{2n+1}(\R), \Sp_{2n}(\C)\ltimes \oH_{2n+1}(\C), with their respective subgroups \GL_{n}(\R), \GL_{n}(\C), \oU(p,q), \Sp_{2n}(\R), \Sp_{2n}(\C).Comment: To appear in Annals of Mathematic

    Binomial coefficients, Catalan numbers and Lucas quotients

    Full text link
    Let pp be an odd prime and let a,ma,m be integers with a>0a>0 and m≢0(modp)m \not\equiv0\pmod p. In this paper we determine k=0pa1(2kk+d)/mk\sum_{k=0}^{p^a-1}\binom{2k}{k+d}/m^k mod p2p^2 for d=0,1d=0,1; for example, k=0pa1(2kk)mk(m24mpa)+(m24mpa1)up(m24mp)(modp2),\sum_{k=0}^{p^a-1}\frac{\binom{2k}k}{m^k}\equiv\left(\frac{m^2-4m}{p^a}\right)+\left(\frac{m^2-4m}{p^{a-1}}\right)u_{p-(\frac{m^2-4m}{p})}\pmod{p^2}, where ()(-) is the Jacobi symbol, and {un}n0\{u_n\}_{n\geqslant0} is the Lucas sequence given by u0=0u_0=0, u1=1u_1=1 and un+1=(m2)unun1u_{n+1}=(m-2)u_n-u_{n-1} for n=1,2,3,n=1,2,3,\ldots. As an application, we determine 0<k<pa,kr(modp1)Ck\sum_{0<k<p^a,\, k\equiv r\pmod{p-1}}C_k modulo p2p^2 for any integer rr, where CkC_k denotes the Catalan number (2kk)/(k+1)\binom{2k}k/(k+1). We also pose some related conjectures.Comment: 24 pages. Correct few typo

    Zero-field magnetization reversal of two-body Stoner particles with dipolar interaction

    Get PDF
    Nanomagnetism has recently attracted explosive attention, in particular, because of the enormous potential applications in information industry, e.g. new harddisk technology, race-track memory[1], and logic devices[2]. Recent technological advances[3] allow for the fabrication of single-domain magnetic nanoparticles (Stoner particles), whose magnetization dynamics have been extensively studied, both experimentally and theoretically, involving magnetic fields[4-9] and/or by spin-polarized currents[10-20]. From an industrial point of view, important issues include lowering the critical switching field HcH_c, and achieving short reversal times. Here we predict a new technological perspective: HcH_c can be dramatically lowered (including Hc=0H_c=0) by appropriately engineering the dipole-dipole interaction (DDI) in a system of two synchronized Stoner particles. Here, in a modified Stoner-Wohlfarth (SW) limit, both of the above goals can be achieved. The experimental feasibility of realizing our proposal is illustrated on the example of cobalt nanoparticles.Comment: 5 pages, 4 figure
    corecore