91,605 research outputs found

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation

    Get PDF
    Lower Triassic marine strata in Spitsbergen accumulated on a mid-to-high latitude ramp in which high-energy foreshore and shoreface facies passed offshore into sheet sandstones of probable hyperpycnite origin. More distal facies include siltstones, shales and dolomitic limestones. Carbon isotope chemostratigraphy comparison allows improved age dating of the Boreal sections and shows a significant hiatus in the upper Spathian. Two major deepening events, in earliest Griesbachian and late Smithian time, are separated by shallowing-upwards trends that culminated in the Dienerian and Spathian substages. The redox record, revealed by changes in bioturbation, palaeoecology, pyrite framboid content and trace metal concentrations, shows anoxic phases alternating with intervals of better ventilation. Only Dienerian–early Smithian time witnessed persistent oxygenation that was sufficient to support a diverse benthic community. The most intensely anoxic, usually euxinic, conditions are best developed in offshore settings, but at times euxinia also developed in upper offshore settings where it is even recorded in hyperpycnite and storm-origin sandstone beds: an extraordinary facet of Spitsbergen's record. The euxinic phases do not track relative water depth changes. For example, the continuous shallowing upwards from the Griesbachian to lower Dienerian was witness to several euxinic phases separated by intervals of more oxic, bioturbated sediments. It is likely that the euxinia was controlled by climatic oscillations rather than intra-basinal factors. It remains to be seen if all the anoxic phases found in Spitsbergen are seen elsewhere, although the wide spread of anoxic facies in the Smithian/Spathian boundary interval is clearly a global event

    A new constant-pressure molecular dynamics method for finite system

    Full text link
    In this letter, by writing the volume as a function of coordinates of atoms, we present a new constant-pressure molecular dynamics method with parameters free. This method is specially appropriate for the finite system in which the periodic boundary condition does not exist. Simulations on the carbon nanotube and the Ni nanoparticle clearly demonstrate the validity of the method. By using this method, one can easily obtain the equation of states for the finite system under the external pressure.Comment: RevTex, 5 pages, 3 figures, submitted to Phys. Rev. Let

    High order quantum decoherence via multi-particle amplitude for boson system

    Full text link
    In this paper we depict the high order quantum coherence of a boson system by using the multi-particle wave amplitude, whose norm square is just the high order correlation function. This multi-time amplitude can be shown to be a superposition of several "multi-particle paths". When the environment or a apparatus entangles with them to form a generalized "which-way" measurement for many particle system, the quantum decoherence happens in the high order case dynamically. An explicit illustration is also given with an intracavity system of two modes interacting with a moving mirror.Comment: 7 pages, revtex, 4 eps figure

    Gene Expression Profile Changes After Short-activating RNA-mediated Induction of Endogenous Pluripotency Factors in Human Mesenchymal Stem Cells

    Get PDF
    It is now recognized that small noncoding RNA sequences have the ability to mediate transcriptional activation of specific target genes in human cells. Using bioinformatics analysis and functional screening, we screened short-activating RNA (saRNA) oligonucleotides designed to target the promoter regions of the pluripotency reprogramming factors, Kruppel-like factor 4 (KLF4) and c-MYC. We identified KLF4 and c-MYC promoter-targeted saRNA sequences that consistently induced increases in their respective levels of nascent mRNA and protein expression in a time- and dose-dependent manner, as compared with scrambled sequence control oligonucleotides. The functional consequences of saRNA-induced activation of each targeted reprogramming factor were then characterized by comprehensively profiling changes in gene expression by microarray analysis, which revealed significant increases in mRNA levels of their respective downstream pathway genes. Notably, the microarray profile after saRNA-mediated induction of endogenous KLF4 and c-MYC showed similar gene expression patterns for stem cell- and cell cycle-related genes as compared with lentiviral vector-mediated overexpression of exogenous KLF4 and c-MYC transgenes, while divergent gene expression patterns common to viral vector-mediated transgene delivery were also noted. The use of promoter-targeted saRNAs for the activation of pluripotency reprogramming factors could have broad implications for stem cell research

    Mosaic spin models with topological order

    Full text link
    We study a class of two-dimensional spin models with the Kitaev-type couplings in mosaic structure lattices to implement topological orders. We show that they are exactly solvable by reducing them to some free Majorana fermion models with gauge symmetries. The typical case with a 4-8-8 close packing is investigated in detail to display the quantum phases with Abelian and non-Abelian anyons. Its topological properties characterized by Chern numbers are revealed through the edge modes of its spectrum.Comment: 4 pages, 3 figures. Final version to appear in Phys. Rev. B as a Rapid Communicatio
    • …
    corecore