1,074 research outputs found

    Hybrid Flocking Control Algorithm with Application to Coordination between Multiple Fixed-wing Aircraft

    Get PDF
    Flocking, as a collective behavior of a group, has been investigated in many areas, and in the recent decade, flocking algorithm design has gained a lot of attention due to its variety of potential applications. Although there are many applications exclusively related to fixed-wing aircraft, most of the theoretical works rarely consider these situations. The fixed-wing aircraft flocking is distinct from the general flocking problems by four practical concerns, which include the nonholonomic constraint, the limitation of speed, the collision avoidance and the efficient use of airspace. None of the existing works have addressed all these concerns. The major difficulty is to take into account the all four concerns simultaneously meanwhile having a relatively mild requirement on the initial states of aircraft. In this thesis, to solve the fixed-wing aircraft flocking problem, a supervisory decentralized control algorithm is proposed. The proposed control algorithm has a switching control structure, which basically includes three modes of control protocol and a state-dependent switching logic. Three modes of decentralized control protocol are designed based on the artificial potential field method, which helps to address the nonholonomic constraint, the limitation of speed and the collision avoidance for appropriate initial conditions. The switching logic is designed based on the invariance property induced by the control modes such that the desirable convergence properties of the flocking behavior and the efficient use of airspace are addressed. The proposed switching logic can avoid the fast mode switching, and the supervisor does not require to perform switchings frequently and respond to the aircraft immediately, which means the desired properties can still be guaranteed with the presence of the dwell time in the supervisor

    Supporting adaptive tour with high level petri nets

    Get PDF
    One of the issues for tour planning applications is to adaptively provide personalized advices for different types of tourists and tour activities. This paper proposes a high level Petri Nets based approach to providing some level of adaptation by implementing adaptive navigation in a tour node space. The new model supports dynamic reordering or removal of tour nodes along a tour path; it supports multiple travel modes and incorporates multimodality within its tour planning logic to derive adaptive tour. Examples are given to demonstrate how to realize adaptive interfaces and personalization. Future directions are also discussed at the end of this paper

    Augmenting Knowledge Transfer across Graphs

    Full text link
    Given a resource-rich source graph and a resource-scarce target graph, how can we effectively transfer knowledge across graphs and ensure a good generalization performance? In many high-impact domains (e.g., brain networks and molecular graphs), collecting and annotating data is prohibitively expensive and time-consuming, which makes domain adaptation an attractive option to alleviate the label scarcity issue. In light of this, the state-of-the-art methods focus on deriving domain-invariant graph representation that minimizes the domain discrepancy. However, it has recently been shown that a small domain discrepancy loss may not always guarantee a good generalization performance, especially in the presence of disparate graph structures and label distribution shifts. In this paper, we present TRANSNET, a generic learning framework for augmenting knowledge transfer across graphs. In particular, we introduce a novel notion named trinity signal that can naturally formulate various graph signals at different granularity (e.g., node attributes, edges, and subgraphs). With that, we further propose a domain unification module together with a trinity-signal mixup scheme to jointly minimize the domain discrepancy and augment the knowledge transfer across graphs. Finally, comprehensive empirical results show that TRANSNET outperforms all existing approaches on seven benchmark datasets by a significant margin

    Learning-based Perception Contracts and Applications

    Full text link
    Perception modules are integral in many modern autonomous systems, but their accuracy can be subject to the vagaries of the environment. In this paper, we propose a learning-based approach that can automatically characterize the error of a perception module from data and use this for safe control. The proposed approach constructs a {\em perception contract (PC)\/} which generates a set that contains the ground-truth value that is being estimated by the perception module, with high probability. We apply the proposed approach to study a vision pipeline deployed on a quadcopter. With the proposed approach, we successfully constructed a PC for the vision pipeline. We then designed a control algorithm that utilizes the learned PC, with the goal of landing the quadcopter safely on a landing pad. Experiments show that with the learned PC, the control algorithm safely landed the quadcopter despite the error from the perception module, while the baseline algorithm without using the learned PC failed to do so
    • …
    corecore