1,074 research outputs found
Hybrid Flocking Control Algorithm with Application to Coordination between Multiple Fixed-wing Aircraft
Flocking, as a collective behavior of a group, has been investigated in many areas, and in the recent decade, flocking algorithm design has gained a lot of attention due to its variety of potential applications. Although there are many applications exclusively related to fixed-wing aircraft, most of the theoretical works rarely consider these situations. The fixed-wing aircraft flocking is distinct from the general flocking problems by four practical concerns, which include the nonholonomic constraint, the limitation of speed, the collision avoidance and the efficient use of airspace. None of the existing works have addressed all these concerns. The major difficulty is to take into account the all four concerns simultaneously meanwhile having a relatively mild requirement on the initial states of aircraft. In this thesis, to solve the fixed-wing aircraft flocking problem, a supervisory decentralized control algorithm is proposed. The proposed control algorithm has a switching control structure, which basically includes three modes of control protocol and a state-dependent switching logic. Three modes of decentralized control protocol are designed based on the artificial potential field method, which helps to address the nonholonomic constraint, the limitation of speed and the collision avoidance for appropriate initial conditions. The switching logic is designed based on the invariance property induced by the control modes such that the desirable convergence properties of the flocking behavior and the efficient use of airspace are addressed. The proposed switching logic can avoid the fast mode switching, and the supervisor does not require to perform switchings frequently and respond to the aircraft immediately, which means the desired properties can still be guaranteed with the presence of the dwell time in the supervisor
Supporting adaptive tour with high level petri nets
One of the issues for tour planning applications is to adaptively provide personalized advices for different types of tourists and tour activities. This paper proposes a high level Petri Nets based approach to providing some level of adaptation by implementing adaptive navigation in a tour node space. The new model supports dynamic reordering or removal of tour nodes along a tour path; it supports multiple travel modes and incorporates multimodality within its tour planning logic to derive adaptive tour. Examples are given to demonstrate how to realize adaptive interfaces and personalization. Future directions are also discussed at the end of this paper
Augmenting Knowledge Transfer across Graphs
Given a resource-rich source graph and a resource-scarce target graph, how
can we effectively transfer knowledge across graphs and ensure a good
generalization performance? In many high-impact domains (e.g., brain networks
and molecular graphs), collecting and annotating data is prohibitively
expensive and time-consuming, which makes domain adaptation an attractive
option to alleviate the label scarcity issue. In light of this, the
state-of-the-art methods focus on deriving domain-invariant graph
representation that minimizes the domain discrepancy. However, it has recently
been shown that a small domain discrepancy loss may not always guarantee a good
generalization performance, especially in the presence of disparate graph
structures and label distribution shifts. In this paper, we present TRANSNET, a
generic learning framework for augmenting knowledge transfer across graphs. In
particular, we introduce a novel notion named trinity signal that can naturally
formulate various graph signals at different granularity (e.g., node
attributes, edges, and subgraphs). With that, we further propose a domain
unification module together with a trinity-signal mixup scheme to jointly
minimize the domain discrepancy and augment the knowledge transfer across
graphs. Finally, comprehensive empirical results show that TRANSNET outperforms
all existing approaches on seven benchmark datasets by a significant margin
Learning-based Perception Contracts and Applications
Perception modules are integral in many modern autonomous systems, but their
accuracy can be subject to the vagaries of the environment. In this paper, we
propose a learning-based approach that can automatically characterize the error
of a perception module from data and use this for safe control. The proposed
approach constructs a {\em perception contract (PC)\/} which generates a set
that contains the ground-truth value that is being estimated by the perception
module, with high probability. We apply the proposed approach to study a vision
pipeline deployed on a quadcopter. With the proposed approach, we successfully
constructed a PC for the vision pipeline. We then designed a control algorithm
that utilizes the learned PC, with the goal of landing the quadcopter safely on
a landing pad. Experiments show that with the learned PC, the control algorithm
safely landed the quadcopter despite the error from the perception module,
while the baseline algorithm without using the learned PC failed to do so
- …