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ABSTRACT 

M.S., Purdue University, May 2018. Hybrid Flocking Control Algorithm with Ap-
plication to Coordination between Multiple Fixed-wing Aircraft. Major Professor: 
Inseok Hwang. 

Flocking, as a collective behavior of a group, has been investigated in many areas, 

and in the recent decade, flocking algorithm design has gained a lot of attention 

due to its variety of potential applications. Although there are many applications 

exclusively related to fixed-wing aircraft, most of the theoretical works rarely consider 

these situations. The fixed-wing aircraft flocking is distinct from the general flocking 

problems by four practical concerns, which include the nonholonomic constraint, the 

limitation of speed, the collision avoidance and the efficient use of airspace. None of 

the existing works have addressed all these concerns. The major difficulty is to take 

into account the all four concerns simultaneously meanwhile having a relatively mild 

requirement on the initial states of aircraft. In this thesis, to solve the fixed-wing 

aircraft flocking problem, a supervisory decentralized control algorithm is proposed. 

The proposed control algorithm has a switching control structure, which basically 

includes three modes of control protocol and a state-dependent switching logic. Three 

modes of decentralized control protocol are designed based on the artificial potential 

field method, which helps to address the nonholonomic constraint, the limitation of 

speed and the collision avoidance for appropriate initial conditions. The switching 

logic is designed based on the invariance property induced by the control modes such 

that the desirable convergence properties of the flocking behavior and the efficient 

use of airspace are addressed. The proposed switching logic can avoid the fast mode 

switching, and the supervisor does not require to perform switchings frequently and 



ix 

respond to the aircraft immediately, which means the desired properties can still be 

guaranteed with the presence of the dwell time in the supervisor. 
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1. INTRODUCTION 

Flocking is commonly known as a collective motion of a group of interacting individ-

uals with matched velocities [1]. With the growth of networked technology, a great 

amount of attention has been obtained by the flocking algorithm design due to a 

lot of potential applications, for instance, the formation flight for unmanned aerial 

systems [50] and for spacecraft [49]. The basic objective of a flocking algorithm is to 

induce certain collective behaviors, typically flocking centering, collision avoidance, 

and velocity matching, which are the three rules of flocking defined by Reynolds [7]. 

Different or additional objectives and constraints should be considered in some prac-

tical applications, for instance, the swarming of fixed-wing aircraft in the national 

airspace. Because of the larger range and longer endurance of fixed-wing aircraft, 

many flocking-related aerial applications are exclusively related to them. The multi-

aircraft coordination in an air corridor with the service from the air traffic control 

system typically involves the fixed-wing aircraft flocking problem. Although there 

have been many developments for the general flocking algorithm design, none of the 

existing works have exhaustively addressed several concerns that are inherent in the 

fixed-wing aircraft applications. This prevent the general flocking algorithm from 

being applied directly. 

At the early stage, most of the flocking-related works have primarily focused on the 

analysis of flocking behavior. References [1-7] are some representative examples of the 

early works. Reynolds in [7] has defined the flocking intuitively by introducing three 

characteristics that are flocking centering, collision avoidance, and velocity matching. 

Vicsek et al. in [6] have investigated the dynamic system of self-driven particles. Gazi 

and Passino in [3] have proved the stability of a type of flocking model theoretically. 

Tanner et al. in [4, 5], have proposed a stable flocking algorithm for fixed and dynamic 

communication graph topology. Later, to achieve the Reynolds rules and the obstacle 
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avoidance, Olfati-Saber has proposed a theoretical framework in [1] for the design of 

a flocking algorithm based on the continuous time consensus algorithm [20] and the 

artificial potential field method. 

By extending the early works that have used the artificial potential field method, 

a lot of additional objectives have been addressed in later works. For instance, the 

connectivity preservation during formation or flocking has been addressed in [11-13, 

19]; flocking in a bounded space has been considered in [8]; Olfati’s work [1] has been 

extended in [10] such that the collective motion asymptotically converges to the vir-

tual leader that has varying velocity. Besides the extensions of the artificial potential 

field method, some alternative approaches for flocking algorithm design have been 

investigated by later works, for example, some model predictive control schemes for 

multi-agent system problems proposed in [14-18], and the unified geometric projec-

tion approach proposed in [9]. It should be noted that the simple agent dynamics 

(e.g., the single or double integrator model) without constraints is typically used 

in a range of flocking-related works, but for some applications related to fixed-wing 

aircraft flocking, more concerns and constraints should be addressed. 

Compared with the general flocking algorithm, the flocking algorithm designed 

for fixed-wing aircraft should address four practical concerns. The nonholonomic 

constraint and the limitation of speed are the first two concerns. It is obvious that 

the fixed-wing aircraft is always approximately heading in the direction of the velocity 

vector, and unlike the automobile, the fixed-wing aircraft cannot fly backwards. The 

coincidence between the velocity vector and the orientation of the aircraft can be 

fulfilled by requiring that the heading of the velocity vector changes continuously 

over time. In addition, there are limitations on the minimum and the maximum 

speeds of fixed-wing aircraft in practical operations; in other words, the magnitude of 

the velocity vector should be bounded within a given interval. The safety issue is the 

third concern that must be addressed. In real-world applications, collision avoidance 

is a crucial objective. It should be noticed that the collision avoidance in practice can 

only be achieved conditionally because the control input is bounded. To gain better 
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applicability, less restrictive requirement is preferred. The fourth concern that should 

be addressed is the efficient use of airspace. Unlike ground robots, the motion of fixed-

wing aircraft have an extra degree of freedom, so to take the advantage, the extra 

degree of freedom should be utilized to relax the condition for collision avoidance. On 

the other hand, considering the national airspace traffic regulation [53], it is preferred 

that the formation flights are adhering to the same altitude because the current Traffic 

Alert and Collision Avoidance System (TCAS) assists to resolve the conflict mainly 

by vertical separations [52]. Hence, the efficient use of airspace can be addressed 

by allowing the 3-dimensional motion to reach the consensus of altitude instead of 

restricting the motion in the 2-dimensional plane. 

Even though there are some works considering the related situations, none of 

the works has theoretically rigorously addressed the aforementioned concerns. Cur-

rently, most of the works that consider the fixed-wing aircraft flocking, e.g., [46-48], 

have only focused on the simulations and experiments rather than theoretical devel-

opments. Most of the general theoretical works on flocking (e.g., [1, 3-5, 10-12]), 

as mentioned before, have only considered very simple agent dynamics, which is 

not enough to address the nonholonomic constraint and the other limitations. It is 

possible to transform the nonholonomic model to a simpler model via the feedback 

linearization technique, but there are usually some singularities for the coordinate 

transformation, which should be treated carefully. Although there have been works 

considering the nonholonomic model (e.g., [23-37]), most of them have only focused 

on the applications for ground robots. These works do not care about the limita-

tions of speed or the sharp heading changes, which are not acceptable for fixed-wing 

aircraft applications. The constant speed model is employed in [41-45, 51], whereas 

this assumption could cause difficulties to achieve self-separation or collision avoid-

ance. For instance, the steering control has been considered in [51], but only the local 

convergence property has been theoretically verified. On the other hand, there are 

also some works that address the nonholonomic constraint, but the collision avoid-

ance or the self-separation is not guaranteed explicitly (e.g., [38-40]). In addition, the 
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efficient use of airspace has not been addressed in any flocking-related works so far. 

The existing works have considered either the 2-dimensional motion only [45] or the 

3-dimensional motion without the consensus of altitude [41]. 

A control algorithm for fixed-wing aircraft flocking is proposed in this thesis such 

that the induced collective behavior is subject to the practical constraints: i) the 

nonholonomic constraint for aircraft dynamics; ii) the limitation on the horizontal 

speed of the aircraft; iii) the collision avoidance; and iv) the efficient use of airspace. 

To simultaneously address all these concerns, in general, requires a restrictive condi-

tion on the initial state (typically, the initial state should be included in a feasible 

subset of the state space), which is not desirable because it makes the applicability 

limited. To circumvent such a technical difficulty, a hybrid control idea is applied 

in this thesis. First, a set of modes of control protocol are designed such that the 

constraints are satisfied for the initial states in certain feasible sets, then an appro-

priate state-dependent switching logic is designed so that the overall feasible set for 

the initial state will be the union of the feasible set of each control mode. By doing 

so, a relatively mild requirement on the initial state can be obtained. The similar 

idea has appeared in some previous works. For instance, a multi-stage formation 

control strategy is proposed in [39] to address the nonholonomic constraint and the 

limitation of speed (but the collision avoidance and the efficient use of airspace are 

not considered in that work). In this thesis, more control objectives and constraints 

will be achieved by designing a supervisory decentralized control scheme. Following 

the aforementioned idea, three modes of decentralized control protocol are designed 

based on the artificial potential field method. It is assumed that the supervisor, or 

the monitoring system, can gather the state information from all aircraft and per-

form the state-dependent switching logic. With the invariance properties induced 

by the control modes, it can be shown that the fast mode switching can be avoided 

using the proposed switching logic, and the supervisor does not have to perform the 

switching logic frequently and respond to the aircraft immediately. In other words, 
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all desired properties can still be guaranteed even if the dwell time is implemented in 

the supervisor. 
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2. PRELIMINARIES 

2.1 Notations 

To avoid ambiguities, the notations are clarified in this section. R+ is used to 

denote the closed right real axis. || ∗ ||1 and || ∗ ||2 are used to denote the standard 

1-norm and Euclidean norm in Rn respectively. I stands for the index set of agents 

when a multi-agent system is discussed. It is assumed that the cordiality of I is N , 

that is, the number of agents in the multi-agent system is N . (∗)i is used to denote 

the state ”∗” of the i-th agent, and if the lower index i is omitted, we refer to the 

vector that collects this state from all agents. For instance, if vi is used to denote the 

horizontal speed of the i-th agent, v is just a RN vector defined as [v1, v2, ..., vN ]
T . 

2.2 σ-Norm 

|| ∗ ||σ is used to denote the σ-norm, which is a real valued function from Rn to 

R+ defined as q
1 ||s||σ , ( 1 + �||s||22 − 1), (2.1)
� 

where � is a positive constant. This function is used in [1] as a smoothed version of the 

Euclidean norm approximately such that the artificial potential field becomes smooth. 

This function is introduced here for the same purpose. Without causing confusion 

is caused, || ∗ ||σ will be used without specifying the dimension of the domain. The 

gradient of σ-norm can be computed as 

s r||s||σ =q , (2.2) 
1 + �||s||22 

which will be used several time during the derivation of the main result. 
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2.3 Invariance Principle 

Invariance principle is commonly involved when the artificial potential method 

is considered (e.g. [1,10-13]). LaSalle’s invariance principle, the standard invariance 

result, has been widely known. It is a powerful tool to prove the invariance and 

attractivity properties of a set in state space. It should be noticed that the standard 

result are for the autonomous system, and for general non-autonomous system, the 

invariance property cannot be easily guaranteed. However, for a special class of 

non-autonomous system, the asymptotically autonomous system, some extension of 

the invariance principle has been developed, which readers can refer to the Chapter 

VIII of [54] or Theorem 8.1 & 8.3 of [57]. In this work, the invariance principle for 

asymptotically autonomous system is used to prove some results. 

2.4 Solutions of Switched Systems 

For systems with switching dynamics, there are different concepts of solution. In 

this work, the switching logic of the controller is state-dependent and memoryless, so 

the overall dynamics can be treated as ẋ = f(x) with piecewise continuous right-hand 

side. Since we will guarantee the fast switching is avoided, the solution in the sense 

of Carath´ For a initial value problem witheodory can be considered for simplicity. 

piecewise continuous dynamics, ẋ = f(x) , under the above assumption, a absolute 

continuous function x(t) is said to be a solution in the sense of Carathéodory if it 

satisfies Z t 
x(t) = x(t0) + f(x(τ))dτ. (2.3) 

t0 

With this concept of solution, the performance of the overall solution can be analyzed 

by considering the modes of control one-by-one. In the Chapter IV, three modes of 

control will be considered separately first and then construct the switching logic to 

get desired properties. When analyzing the modes of control separately, t1, t2 and 

t3 are used to denote the initial time for the system with only mode 1, 2 and 3 
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respectively. Moreover, when discussing the overall trajectory induced by the hybrid 

control including all modes of control, t0 is used to denote the overall initial time. 
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3. PROBLEM FORMULATION 

3.1 Fixed-wing Aircraft Model 

Let us consider the following second-order nonholonomic kinematic model for the 

dynamics of the i-th aircraft agent with the assumption that the behavior of the 

aircraft is not aggressive: 

ẋi = vi cos(θi), 

ẏi = vi sin(θi), 

żi = wi, 
(3.1) 

v̇i = ai, 

θ̇ 
i = φi, 

ẇi = δi, 

where xi, yi are the horizontal coordinates for aircraft agent i and zi stands for 

the attitude of aircraft agent i. vi, wi, θi are the horizontal component of velocity, 

vertical component of velocity and heading angle in the horizontal plane for agent 

i. ai, wi, and δi are respectively the horizontal acceleration, horizontal heading rate, 

and altitude rate, which are used for control inputs of aircraft. The assumption that 

the behavior of each agent is not aggressive means that wi is small. 

3.2 Control Objectives and Constraints 

In addition to the velocity matching condition which is one of the general flocking 

objective, the major concerns of the fixed-wing aircraft flocking control can be math-

ematically described as the following objectives and constraints. 

(O1) Velocity Constraint: ∀t ≥ t0, vi ∈ [vmin, vmax] ∀i ∈ I; 
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(O2) Collision Avoidance: ∀t ≥ t0, dij , 
p

(xi − xj )2 + (yi − yj )2 +r|zi −zj | ≥ dmin 

∀i, j ∈ I with i 6= j, where r is a positive design parameter; 

(O3) State Consensus: As t →∞, vi → v̂, θi → θ̂, wi → 0, zi → 0 ∀i ∈ I; 

(O4) Self-Separation: As t →∞, dij ≥ d̂  ∀i, j ∈ I with i 6= j 

(O1) & (O2) are constraints on the system state, and (O3) & (O4) are the desired 

properties for the flocking behavior. The nonholonomic and speed constraints are 

addressed by the objective (O1) together with the aircraft kinematic model (3.1). The 

velocity matching from the Reynolds rules is interpreted as the objective (O3). The 

efficient use of airspace is also covered by the objective (O3) because we consider the 

3-dimensional model and require the consensus of altitudes of agents. It is assumed 

that the vertical speed and altitude of each agent converge to zero without loss of 

generality. (O4) is not explicitly corresponding to our major concerns, but it but is 

generally considered in many flocking problems for efficient and safe agent interactions 

[1]. 

The objective (O2) is corresponding to the collision avoidance. Here a distance 

measurement other than the Euclidean norm in R3 is considered. Note that the 

definition of dij is inspired by the practical situation where the vertical distance 

between aircraft is less critical than the horizontal distance. 

As the objectives imply, this work does not consider the flocking centering, one 

of the Reynolds rules. However, it would not be complicated to extend the con-

trol scheme proposed in this work to achieve the flocking centering. The theoretical 

framework proposed here is based on the artificial potential field method and the 

theory of switched control, which have been developed in many previous works. The 

possible extension of this work to achieve the flocking centering could be modifying 

the artificial potential field and/or adding new mode in the hybrid control scheme. 

For simplicity, let us not consider these extensions currently. 
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4. HYBRID FLOCKING ALGORITHM DESIGN 

This section presents a supervisory decentralized control algorithm for fixed-wing air-

craft flocking. Employing the hybrid system framework, the decentralized controller 

for each aircraft consists of three different modes of flocking control. Then, the mode 

switching is governed by the central supervisor based on the whole aircraft state 

information. Therefore, the state-dependent mode transition logic determines the 

overall flocking behavior of the aircraft such that control objectives and constraints 

(O1)-(O4) are achieved. Figure 1 illustrates the proposed hybrid control framework 

for fixed-wing aircraft flocking. 

Multi-agent System

Supervisor

Controller Mode 1

Controller Mode 2

Controller Mode 3

Switching 
Signal

Decentralized 
Controllers

Fig. 4.1. State-Dependent Switching Control Scheme 

Artificial potential field method is applied for designing each mode of the control 

protocol. As mentioned, this design technique has been wildly considered in related 
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works, e.g., [1,10-13]. The basic idea of this technique is to treat each agent of the 

multi-agent system as a particle as well as a source of potential field. The motion 

of the agents is driven by the negative gradient of the integrated potential field, 

which is an analogue to the mechanical system in physics. By carefully designing the 

potential field, the desired behavior for the system can be guaranteed. The artificial 

potential field method is considered for control protocol design majorly based on two 

advantages. The first advantage is that the communication and computation load for 

each agent can be reduced by using finitely supported artificial potential field for each 

source, i.e., each agent only need to react to its neighboring agents rather than all 

agents. The second advantage is that the artificial potential field method has desired 

scalability and is robust to agents failure. 

In this thesis, the objectives related to constraints on the state, (O1) and (O2), 

will be achieved mainly by invariant set design. The invariance property will be 

induced by the artificial potential field method. By introducing appropriate artificial 

potential functions, each mode of control protocol can make some subsets of the 

state space invariant. The invariance property will not only be used to fulfill the 

constraints on the state but also be applied to design the switching logic. If the mode 

transition is determined by whether the multi-agent system state is in some invariant 

sets or not, the fast mode switching can be naturally excluded. In addition, the 

supervisor does not have to perform the switching logic too frequently or respond to 

aircraft immediately, and the objectives can still be guaranteed when the dwell time 

for performing the switching logic is introduced. 

What follows is the detailed description of each of three flocking control modes, 

based on which the mode transition logic of the supervisor will be presented. 
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4.1 Mode 1: Heading Alignment & Vertical Separation 

For this mode of the flocking control protocol, two main tasks are accomplished: 

heading alignment and vertical separation. The heading angle as well as the hori-

zontal speed for each aircraft will be regulated with the constraint on the horizontal 

speed taken into account. Meanwhile, agents are separated vertically in order to gain 

distance for following stages. 

The following definition is employed to the artificial potential field design for 

control mode 1. 

Definition 4.1.1 ψ1 : R+ 7→ R+ is a candidate artificial potential function for con-

trol mode 1 if it has the following properties: (i) it is a monotone decreasing function 

ˆwith continuous derivative; and (ii) it has a finite support, i.e., supp ψ1 = [0, dσ). 

The gradient of the candidate artificial potential function for control mode 1 is defined 

as 

dψ1(η)
f1(ζ) , |η=ζ (4.1)

dη 

With the definition given above, for the i-th agent, the control mode 1 is given as 

ai = −kv(vi − v̂), 

φi = −kθ(θi − θ̂), (4.2)X 
δi = −r f1(r||hij ||σ + ||pij ||σ)n̂ij − kwwi, 

j 6=i 

where kv, kθ, kw are positive constant, and pij , [xi − xj , yi − yj ]| ∈ R2; n̂ij , 

√ hij 

2 
, where hij , zi − zj ; f1 is the gradient of a candidate artificial potential 

1+�||hij ||2 

function for control mode 1. It should be noted that, by the fact that f1 has a finite 

support, the computation of δi only depends on the neighboring agents of the i − th 

agent, even if the sum is taken over all other agents in the expression. 

The main properties for the flocking control mode 1 is summarized by the following 

theorem: 



14 

Theorem 4.1.1 For the multi-agent system described by (3.1), the following state-

ments are true if the control (4.2) is applied: 

(I) As t →∞, vi → v̂, θi → θ̂  and vi(t) ∈ [vmin, vmax] ∀t ≥ 0, ∀i ∈ I; 

(II) ∀t ≥ t1, dij(t) ≥ dmin for i, j ∈ I with i 6= j if the following inequality is 

satisfied: 

1 v̂ ||pij (t1)||2 − { |vi(t1) − vj (t1)| + |θi(t1) − θj (t1)|
kv kθ (4.3)
1 vi(t1) + vj (t1)

+ ( − v̂)|θi(t1) − θj (t1)|} ≥ dmin;
kvkθ 2 

(III) As t → ∞, wi → 0; in addition, almost every configuration the system 

approaches has the property that dσij , r||hij ||σ + ||pij ||σ ≥ d̂  
σ between any two agents 

i 6= j. 

The first statement is corresponding to the heading alignment, velocity matching 

and the constraint on the horizontal speed. The second statement gives a sufficient 

condition on the initial state for collision avoidance. One can see that this condition 

mainly requires the mismatch between horizontal velocity vectors to be small, but it 

is independent to the mismatch between the initial headings and the desired heading. 

Note that the right-hand side of the inequality (4.3) is dmin, but if we restrict aircraft 

to move in the 2-D plane through all stages (vertical separations are not allowed), the 

right-hand side will need to be larger such that there are enough separations for later 

maneuvers. This explains how the extra degree of freedom during the transient stage 

can relax the requirement on the initial state. The proof of the first two statements 

of Theorem 4.1.1 is straightforward via algebra. The similar proof can be found in 

[41,42]. 

The third statement in the Theorem 4.1.1 claims the convergence of the multi-

agent system state under the control mode 1. The interpretation of this statement 

is that the aircraft will gain enough separations for later maneuvers. The proof 

is based on the artificial potential field method and the invariance principle for the 

asymptotically autonomous system. The multi-agent system under the control mode 1 

can be treated as two cascaded subsystems: the horizontal subsystem and the vertical 
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subsystem (see Figure 4.2). The part (I)&(II) of the Theorem 4.1.1 reveal the stability 

of the horizontal subsystem, then the vertical subsystem with the asymptotic input 

from the horizontal subsystem can be regarded as an asymptotically autonomous 

system. A Hamiltonian-like function is defined in order to show the convergence 

property. The detailed proof for the Theorem 4.1.1 is provided as below. 

Vertical 
DynamicsController

Horizontal 
Dynamics

Controller

Horizontal Subsystem under Controller Mode 1 Vertical Subsystem under Controller Mode 1

𝑝𝑝𝑖𝑖𝑖𝑖 𝑡𝑡 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡

Close-Loop Behavior of the Multi-agent System under Controller Mode 1

Fig. 4.2. Decoupling the Multi-agent System 

Proof 

The part (I) of the Theorem 4.1.1 can be directly seen from the equation (4.2). It 

is obvious that for any agent i, the following identity is true: 

−kv t vi(t) = v̂ + (vi(t1) − v̂)e , 
(4.4) 

θi(t) = θ̂ + (θi(t1) − θ̂)e −kθ t . 
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6To show the part (II) of the Theorem 4.1.1, first we show that ∀i, j ∈ I with i = j, 

d ||pij ||2 converges to zero exponentially fast. If ||pij ||2 6= 0, we have 
dt 

d 1 ||pij ||2 = pij 
| ṗij

dt ||pij ||2 

1 ≤ ||pij ||2||ṗij ||2||pij ||2 q 
= (vi sin(θi) − vj sin(θj ))2 + (vi cos(θi) − vj cos(θj ))2 q 
= vi 

2 + vj 
2 − 2vivj (sin(θi) sin(θj ) + cos(θi) cos(θj )) q (4.5) 

= vi 
2 + vj 

2 − 2vivj (cos(θi − θj )) q 
= (vi − vj )2 + 2vivj (1 − cos(θi − θj )) r 

θi − θj
= (vi − vj )2 + 4vivj sin

2( )
2r 

θi − θj≤ (vi − vj )2 + 4vivj ( )2 . 
2 

√ 
Recall that for an arbitrary R2 vector η, ||η||2 ≤ ||η||1 ≤ 2||η||2 holds, so if let 

√ 
η = [vi − vj , vivj (θi − θj )]|, we get 

d √ ||pij ||2 ≤ |vi − vj | + vivj|θi − θj |
dt (4.6)

vi + vj≤ |vi − vj | + |θi − θj |. 
2 

Similarly, 
d 1 |||pij ||2 = pij ṗijdt ||pij ||2 

1 ≥ − ||pij ||2||ṗij ||2||pij ||2 r (4.7) 
θi − θj≥ − (vi − vj )2 + 4vivj ( )2 

2 
vi + vj≥ −|vi − vj | − |θi − θj |. 

2 
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Together with (4.4), it is shown that d ||pij ||2 converges to zero exponentially fast.
dt 

Now we can show (II) by contradiction. Assume there are two agents i and j that 

collide at t ∗ . By the continuity of d ||pij (t)||2, we have dt 

dmin > ||pij(t ∗ )||2 Z t ∗ 
d 

= ||pij(0)||2 + ||pij (t)||2dt 
dtZ0 

t ∗ 
vi + vj≥ ||pij (0)||2 − |vi − vj | + |θi − θj |dt Z0 

∞ 
2 

vi + vj≥ ||pij (0)||2 − |vi − vj | + |θi − θj |dt Z0 
∞ 

2 
(4.8) 

−kv t = ||pij(t1)||2 − {|vi(t1) − vj (t1)|e 
0 

vi(t1) + vj (t1)
+ [v̂(1 − e −kv t) + e −kv t]|θi(t1) − θj (t1)|e −kθ t}dt 

2 
1 

= ||pij(t1)||2 − { |vi(t1) − vj (t1)|
kv 

v̂ 1 vi(t1) + vj (t1)
+ |θi(t1) − θj (t1)| + ( − v̂)|θi(t1) − θj (t1)|},
kθ kvkθ 2 

which is contradictory to (4.3). Therefore, if the initial condition satisfies (4.3), there 

will not be any collision, i.e., ∀t ≥ t1, dij (t) ≥ dmin ∀i, j ∈ I with i 6= j. 

The part (III) of the Theorem 4.1.1 can be shown by considering the following 

Lyapunov like function: 

H1 , PE1(z, t) + KE1(w) + G(t) 

1 X X 1 X (4.9) 
, ψ1(r||hij ||σ + ||pij||σ) + wi 

2 + G(t)
2 2 

i∈I j 6=i∈I i∈I 
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P P 
where G(t) takes the form of G(t) = Aeat such that Ġ(t)+ 1 f1(r||hij ||σ +2 i∈I j 6=i∈I 

||pij ||σ) d ||pij ||σ ≤ 0∀t ≥ 0. It is possible because f1 is bounded and |
dt
d ||pij ||σ| ≤dt 

√1 ||ṗij ||2, which converges exponentially fast. If algorithm (2) is applied, we have 
� X X X1 d d˙ ˙H1 = f1(r||hij ||σ + ||pij ||σ)(r ||hij ||σ + ||pij ||σ) + wiẇ i + G 

2 dt dt 
i∈I j 6=i∈I i∈I 

1 X X ∂||hij ||σ ∂||hij ||σ 
= f1(r||hij ||σ + ||pij ||σ)(r żi + r żj )

2 ∂zi ∂zj
i∈I j=6 i∈I X X X1 d ˙+ f1(r||hij ||σ + ||pij ||σ) ||pij ||σ + wiẇi + G 
2 dt 

i∈I j 6=i∈I i∈I 

(4.10) 
∂||hij ||σ ∂||hij ||σ ∂||hij ||σSince = = n̂ij and similarly = n̂ji, so∂zi ∂hij ∂zj X X X X1 d

Ḣ1 = wi rf1(r||hij ||σ + ||pij||σ)n̂ij + f1(r||hij ||σ + ||pij ||σ) ||pij ||σ
2 dt 

i∈I j 6=i∈I i∈I j=6 i∈I X 
˙+ wiẇ i + G 

i∈I X X X1 d ˙= f1(r||hij ||σ + ||pij ||σ) ||pij||σ − kwwi 
2 + G 

2 dt 
i∈I j 6=i∈I i∈I X 

≤ − kwwi 
2 

i∈I 

(4.11) 

For an non-autonomous system, the inequality above implies that the positive 

limit set for all solutions is included in the set where wi = 0 ∀i ∈ I. Furthermore, 

the vertical subsystem is asymptotically autonomous, then the positive limit set of all 

solutions is semi-invariant with respect to the system that the non-autonomous system 

converges to. Note that the semi-invariance is equivalent to invariance if the solution 

of the system is uniquely determined. Hence, we can conclude that all solutions of the 

system converge to the largest invariant set where wi = 0 ∀i ∈ I with respect to the 

limiting system. In other words, all trajectories converge to the equilibriums of the 

limiting system, which are also the extremums limt→∞ PE1(z, t). It is assumed that 

all points but minimums of limt→∞ PE1(z, t) are unstable (this kind of assumption 

is made in [1], and is also used in [10, 12]). It can be observed that all minimums 
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of limt→∞ PE1(z, t) has the properties that dσij , r||hij ||σ + ||pij ||σ ≥ d̂  
σ between any 

two agents i 6= j, which concludes the statement. 

4.2 Mode 2: Horizontal Separation 

The basic objective for this mode of control protocol is to gain enough horizon-

tal separations. In addition, it is required to avoid collisions without violating the 

constraint on the horizontal speed, assuming the control mode 1 has regulated the 

configuration of the system. The main techniques used in this part include the feed-

back linearizition and the artificial potential field method. The following definition is 

employed to the artificial potential field design for the control mode 2: 

Definition 4.2.1 ψ2 : R+ 7→ R+ is a candidate artificial potential function for con-

trol mode 2 if it has the following properties: (i) it is a monotone decreasing function 

with continuous derivative; and (ii) supp ψ2 = [0, d̂∗ 
σ) ( [0, d̂  

σ) = supp ψ1. The 

gradient of the candidate artificial potential function for control mode 2 is defined as 

dψ2(η)
f2(ζ) , (4.12)

dη 
|η=ζ 

Besides the above definition, the next assumption introduces a constant that will 

be used for the design of control mode 2: 

Assumption 1 There is a constant K such that the following inequality is satisfied: 

X X1 
Kψ2(||dmin||σ) > sup ψ2(||pij ||σ), (4.13) 

||pij ||σ ≥||dmin||σ 2 
i∈I j=6 i∈I 

where the supremum is taken over the cases where for any two agents i 6= j, ||pij ||σ ≥ 

||dmin||σ. 

The constant K in the control protocol will be related to the ratio required between 

the control effort spent on collision avoidance and the control effort spent on the 
N(N−1)convergence. 

2 can be a choice for K, but a smaller K could help to get less 

conservative result. 
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Feedback linearization technique is widely used for nonlinear system control de-

sign. Some related works applied this technique to simplify the problem (e.g., [39]). 

The motivation of using this method is to convert the dynamics with nonholonomic 

constraint to the double integrator model, which makes the artificial potential field 

design more straightforward. The following coordinate transformation associates the 

horizontal accelerations of each agent with its control input for the horizontal motion: ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎣uxi xi ⎣cos θi − sin θi vi⎦ , ⎣ 
¨ ⎦ = ⎦⎣ 

˙ ⎦ . (4.14) 
uyi ÿ  i sin θi cos θi viθ̇ i 

Note that vi = 0 is a singularity, but it is avoided if the constraint on the horizon-

tal speed is not violated. For convenience, the vector [δvxi, δvyi]| is defined as the 

following. 

⎡ ⎤ ⎡ ⎤ 
ˆ ⎣δvxi ⎣vxi − v̂ cos θ⎦ = ⎦ , (4.15) 

δvyi vyi − v̂ sin θ̂  

where vR = [v̂ cos θ̂  v̂ sin θ̂]| is the reference velocity whose magnitude v̂ is in the open 

interval (vmin, vmax). It should be remarked that the constraint on the horizontal 

speed of each agent can be replaced with the constraint on [δvxi, δvyi]|. 

The mode 2 of the control protocol in the new coordinate is given as ⎡ ⎤ ⎡ ⎤ Xn o ⎣uxi ⎣kxδvxi⎦ = − Kf2(r||hij ||σ + ||pij ||σ) + f2(||pij ||σ) ρ̂ij − ⎦ , 
uyi j 6=i kyδvyi (4.16)X 
δi = − Krf2(r||hij ||σ + ||pij||σ)n̂ij − kzwi, 

j 6=i 

where ⎡ ⎤ 
1 ⎣xi − xj

ρ̂ij ,q ⎦ , 
1 + �||pij ||22 yi − yj 

(4.17) 
hij

n̂ij ,q , 
1 + �||hij ||22 

and kx, ky and kz are some positive constants; K is a constant that satisfies the 

inequality (4.13); f2 is the gradient of a candidate artificial potential function for 
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control mode 2. It can be seen that each agent only requires the information from 

its horizontal neighbors. Strictly speaking, if two horizontally neighboring agents are 

vertically separated far away from each other, it might be difficult for these agents 

to obtain the required information from each other. However, it will not take place 

unless these agents are initially significantly separated in the vertical direction. Even 

if some agents are significantly separated in the vertical direction at the initial stage, 

some techniques in implementations could deal with it. For example, the original 

flocking group can be view as the collection of some subgroups in this case, then 

one can design an extra mode of control protocol to make these subgroups flies at 

approximately same altitude. 

The main properties for the control mode 2 is summarized by the following theo-

rem: 

Theorem 4.2.1 For the multi-agent system described by the equation (3.1) with As-

sumptions 1 hold, the following statements are true if the control (4.16) is applied: 

(I) vi(t) ∈ [vmin, vmax] ∀t if using appropriate ψ2, f2 and switching condition such n o nP P P
1 1 2that H2(t2) , 
2 i∈I j 6=i∈I Kψ2(r||hij ||σ +||pij ||σ)+ψ2(||pij ||σ) + 

2 i∈I δvxi + o 
δvyi 

2 + wi 
2 ≤ 1 ṽ2 , where ṽ , min{v̂ − vmin, vmax − v̂};

2 

(II) There is no collision if for any two agents i 6= j, ||pij(t2)||σ ≥ ||dmin||σ, n oP 2 2 2 r||hij (t2)||σ+||pij (t2)||σ ≥ d̂∗ 
σ and 1

2 i∈I δvxi(t2) +δvyi(t2) +wi(t2) < ψ2(||dmin||σ); 

(III) Almost every configuration the system approaches has the property that ||pij ||σ ≥ 

d̂∗ 
σ for any two agents i 6= j; 

(IV) As t →∞, vi → v̂, θi → θ̂  , wi → 0 ∀i ∈ I. 

The first statement in the Theorem 4.2.1 is corresponding to the constraint on 

the horizontal speed. The second statement of the Theorem 4.2.1 is equivalent to say 

that there will not be any collision using the control mode 2 if the configuration of 

the system has been regulated by the control mode 1. The third statement claims 

that all agents will be separated in the horizontal direction. The last statement in 

the theorem declares that the heading angle, horizontal and vertical speeds of each 

agent will converge to the reference value. 
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The proof is still based on the artificial potential field method. A Hamiltonian 

function is defined as the sum of the total potential energy and the total kinetic energy, 

then it can be shown that the time derivative of this function is non-positive. If the 

initial Hamiltonian function value is small, then it will not get larger later, which 

implies that the constraint on the horizontal speed will be satisfied and collisions will 

be avoided. The statement related to the convergence properties can be shown using 

the standard LaSalle’s invariance principle. The detailed proof is given as below. 

Proof 

Consider the Hamiltonian defined as below: 

H2 , PE2 + KE2 X X n o Xn o1 1 2 2 2 , Kψ2(r||hij ||σ + ||pij ||σ) + ψ2(||pij ||σ) + δvxi + δvyi + wi ,
2 2 

i∈I j 6=i∈I i∈I 

(4.18) 

where K is the parameter introduced in Assumption 1 and used in the control (4.16). 

Note that H2 is bounded below. If the control (4.16) is applied, we have X X n o1 d
Ḣ2 = Kf2(r||hij ||σ + ||pij ||σ) + f2(||pij ||σ) ||pij ||σ

2 dt 
i∈I j=6 i∈I X X1 d 

+ Krf2(r||hij ||σ + ||pij ||σ) ||hij ||σ (4.19)
2 dt 

i∈I j=6 i∈I Xn o 
+ δvxiuxi + δvyiuyi + wiδi . 

i∈I 

Recall that 

d ||pij ||σ = r||pij ||| ṗijσdt 
1 (4.20) 

=q {(xi − xj )( ̇xi − ẋj ) + (yi − yj )( ̇yi − ẏj )}, 
1 + �||pij ||22 
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then X X n o1 d 
Kf2(r||hij ||σ + ||pij ||σ) + f2(||pij ||σ) ||pij ||σ

2 dt 
i∈I j 6=i∈I X X n o xi − xj

= vxi Kf2(r||hij ||σ + ||pij ||σ) + f2(||pij ||σ) q 
2 (4.21)

i∈I j 6=i∈I 1 + �||pij ||2 X X n o yi − yj
+ vyi Kf2(r||hij ||σ + ||pij||σ) + f2(||pij ||σ) q . 

2 
i∈I j 6=i∈I 1 + �||pij ||2 

Similarly, X X1 d 
Krf2(r||hij ||σ + ||pij ||σ) ||hij ||σ

2 dt 
i∈I j=6 i∈I 

(4.22)X X 
= wi Krf2(r||hij ||σ + ||pij ||σ)n̂ij . 

i∈I j=6 i∈I 

In addition, X X Xn o xi − xjˆδvxiuxi = − (vxi − v̂ cos θ) Kf2(r||hij ||σ + ||pij ||σ) + f2(||pij ||σ) q 
2 

i∈I i∈I j=6 i 1 + �||pij||2 X 
− kxδvxi 

2 

i∈I X Xn o xi − xj
= − vxi Kf2(r||hij ||σ + ||pij||σ) + f2(||pij ||σ) q 

2 
i∈I j 6=i 1 + �||pij ||2 X 

− kxδvxi 
2 , 

i∈I 

(4.23) P P 
where we have used ρ̂ij = −ρ̂ji. If we expand i∈I δvyiuyi and i∈I wiδiin the same 

manner, we will get Xn o 
2 2 2Ḣ 

2 = − kxδvxi + kyδvyi + kzwi ≤ 0 (4.24) 
i∈I 

To see (I), we consider the monotonicity: H2(t) ≤ H2(t2)∀t ≥ t2. If H2(t2) is 

small enough, the kinetic energy (the second term in H2) will be limited. In detail,q 
δvxi 

2 + δvyi 
2 ≤ ṽ , min{v̂ − vmin, vmax − v̂}∀t ≥ t2 implies vi ∈ [vmin, vmax]∀t ≥ t1. 

We can claim that if the control mode 2 is triggered when the inequality H2 ≤ 1
2 ṽ

2 is 
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satisfied, the velocity constraint can be guaranteed. It can be proved by contradic-

tion: if it is not the case, there exists a t ∗ such that H2(t ∗) > 1
2 ṽ

2 by the definition of 

H2, but H2(t) is monotonically decreasing as shown before, which is contradictory to 

the assumption that the mode transition is triggered when the inequality H2 ≤ 1
2 ṽ

2 

is satisfied. 

(II) can be proved by contradiction. First we assume two agents, say i and j, 

collide at t = t ∗ ≥ t2. That is r||hij (t ∗)||σ + ||pij (t ∗)||σ ≤ ||dmin||σ, which also implies 

||pij (t ∗)||σ ≤ ||dmin||σ. Hence 

H2(t 
∗ ) ≥ ψ2(||dmin||σ) + Kψ2(||dmin||σ). (4.25) nP 

Since ||pij(t2)||σ ≥ ||dmin||σ, r||hij (t2)||σ + ||pij (t2)||σ ≥ d̂∗ 
σ and 1

2 i∈I δvxi(t2)
2 + o 

δvyi(t2)
2 + wi(t2)

2 < ψ2(||dmin||σ), we have X X1 
H2(t1) < sup ψ2(||pij ||σ) + ψ2(||dmin||σ) 

||pij ||σ ≥||dmin||σ 2 
i∈I j 6=i∈I (4.26) 

< Kψ2(||dmin||σ) + ψ2(||dmin||σ). 

˙However, H2 ≤ 0 implies 

H2(t 
∗ ) ≤ H2(t2) < ψ2(||dmin||σ) + Kψ2(||dmin||σ), (4.27) 

which is contradictory to (4.24). 

(III) and (IV) can be shown by applying LaSalle’s invariance principle. LaSalle’s 

invariance principle states that all solutions to the system converge to the largest 

˙invariant set in the set where H2 is zero, which concludes (IV). The largest invariant 

set is nothing but the set of the equilibriums of the multi-agent system, which are also 

the extremums of PE2. It is again assumed that all equilibriums but the minimums of 

PE2 are unstable (the similar assumption is made in [1] and used in [10, 12]). Since the 

minimums of PE2 has the property that ||pij ||σ ≥ d̂∗ 
σ, we conclude the statement (III). 

It should be noticed that in practice, the unstable equilibriums can be simply excluded 
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by some implementation techniques. For example, since the unstable equilibriums are 

not corresponding to the global minimums of PE2, one can perturb the configuration 

to make H2 smaller, then by monotonicity of H2, the unstable configuration can be 

excluded. 

4.3 Mode 3: Horizontal Separation and Vertical Alignment 

The control objective related to the final convergence properties, (O3) and (O4), 

will be achieved by using this control mode. In other words, each agent will gain 

the desired separation in the horizontal direction, and the altitude of each agent will 

converge to the same value. Meanwhile, the velocity constraint (O1) and collision 

avoidance (O2) are also addressed assuming the configuration of the multi-agent sys-

tem has been regulated by the control mode 2. 

It can be realized that all control objectives and constraints (O1)-(O4) are involved 

in this control mode. Although mode 3 of the control protocol will address all of these 

control objectives and constraints, the requirement on the initial state for this control 

mode is very restrictive, so the control mode 3 cannot be directly applied without 

the hybrid control structure. With the help of the control mode 1 and mode 2, the 

requirement on the initial state for the control mode 3 can be satisfied, which explains 

the necessity of the control mode 1 and mode 2 as well as the hybrid control structure 

of the proposed algorithm. 

The basic methodologies for this mode of control include the artificial potential 

field method, feedback linearization and consensus algorithm for double-integrator 

dynamics. Similar to the system under the control mode 1, the dynamics under 

the control mode 3 can be decoupled into the horizontal subsystem and the vertical 

subsystem. The objective of the vertical subsystem is simply the consensus of the 

altitude, and the objective for the horizontal subsystem is to maintain the separation 

and address the velocity constraint and collision avoidance. The following definitions 
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are employed to the artificial potential field design and the adjacency function design 

for control mode 3. 

Definition 4.3.1 ψ3 : R+ 7→ R+ is a candidate artificial potential function for con-

trol mode 3 if it has the following properties: (i) it is a monotone decreasing function 

d̂∗∗ d̂∗with continuous derivative; and (ii) supp ψ3 = [0, ) ( [0, ) = supp ψ2. Theσ σ 

gradient of the candidate artificial potential function for control mode 3 is defined as 

dψ3(η)
f3(ζ) , |η=ζ (4.28)

dη 

Definition 4.3.2 adj : R+ 7→ R+ is a candidate adjacency function for the control 

mode 3 if it has the following properties: (i) it is a monotone decreasing function with 

d̂∗∗continuous derivative; and (ii) supp adj = [0, σ ). 

With Definition 4.3.1, 4.3.2 and the feedback linearization (4.14), the mode 3 of 

the control protocol is proposed as ⎡ ⎤ ⎡ ⎤ ⎣uxi X ⎣cxδvxi⎦ = − f3(||pij ||σ)ρ̂ij − ⎦ , 
uyi j=i cyδvyi 6 (4.29)X 
δi = − adj(r||hij ||σ + ||pij ||σ)(wi − wj ) − cwwi − czzi, 

j 6=i 

where ρ̂ij has been defined in equation (4.17) and cx, cy, cz, cw are some positive 

constants; f3 is the gradient of a candidate potential function for control mode 3; adj 

is a candidate adjacency function. Similar to the expression of control mode 2, the 

control for the horizontal motion subsystem is still based on the artificial potential 

method, so for each agent, the control only depends on the horizontally neighboring 

agents. For the vertical motion subsystem, the control is just a consensus algorithm 

for double integrator dynamics. Many existing works have investigated and extended 

the consensus algorithm for double integrator dynamics (e.g., [21, 22, 55, 56]); the 

control used here can be replaced by other appropriate consensus algorithms, but 

without lose of generality, let us just consider this one for simplicity. Recall the as-

sumption that the vertical distances between agents are not so large made in the 
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previous section. The same assumption is also appropriate here because the vertical 

distances between agents will converge to the same value. The main results for the 

controller mode 3 are summarized in the following theorem. 

Theorem 4.3.1 For the multi-agent system described by the equation (3.1), the fol-

lowing statements are true if the control (4.29) is applied: 

(I) vi(t) ∈ [vmin, vmax] ∀t if using appropriate ψ3, f3 and switching condition n oP P P
1 2 2 2≤ 1such that H3h(t3) , ψ3(||pij ||σ) + 1 δvxi + δvyi ṽ , where 
2 i∈I j 6=i∈I 2 i∈I 2 

ṽ = min{v̂ − vmin, vmax − v̂}; 

(II) There is no collision if using appropriate ψ3, f3 and switching condition such 

that H3h(t3) < ψ3(||dmin||σ); 

(III) As t →∞, vi → v̂, θi → θ̂  , wi → 0, zi → 0 ∀i ∈ I; 

(IV) Almost every configuration that the system approaches has the property that 

d∗∗for any two agents i 6= j, ||pij ||σ ≥ ˆ 
σ ; 

The statements (I)-(IV) are exactly corresponding to the four global objectives 

(O1)-(O4). The proof for Theorem 4.3.1 is basically analogue to the proof of Theorem 

4.2.1. Two Hamiltonian functions are defined for the horizontal subsystem and the 

vertical subsystem respectively. Then it can be shown that the time derivative of 

these two functions are non-positive. The statement (I) and (II) of Theorem 4.3.1 is 

the direct result from the monotonicity of the Hamiltonian functions. (III) and (IV) 

can be verified using LaSalle’s invariance principle. The detailed proof is given as 

below. 

Proof 

Let us deal with the horizontal dynamics and vertical dynamics separately. For the 

horizontal dynamics, we consider the Hamiltonian defined as below: X X Xn o1 1 
H3h = ψ3(||pij ||σ) + δvxi 

2 + δvyi 
2 . (4.30)

2 2 
i∈I j 6=i∈I i∈I 
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Thus, X X Xn o1 d 
Ḣ 

3h = f3(||pij ||σ) ||pij ||σ + δvxiuxi + δvyiuyi 
2 dt 

i∈I j 6=i∈I i∈I X X X Xxi − xj yi − yj
= vxi f3(||pij ||σ)q + vyi f3(||pij ||σ)q 

2 2 
i∈I j 6=i∈I 1 + �||pij ||2 i∈I j 6=i∈I 1 + �||pij ||2 Xn o 

+ δvxiuxi + δvyiuyi . 
i∈I 

(4.31) 

If the control (4.29) is applied, we have Xn o 
Ḣ 

3h = − cxδvxi 
2 + cyδvyi 

2 ≤ 0. (4.32) 
i∈I 

Similarly, for the vertical dynamics, we consider another Hamiltonian witch is 

defined as below: X X1 1 
H3v = czzi 

2 + wi 
2 . (4.33)

2 2 
i∈I i∈I 

Then X X 
Ḣ3v = czziwi + δiwi. (4.34) 

i∈I i∈I 

If the control (4.29) is applied, we have Xn X o 
Ḣ3v = − cwwi 

2 − wi adj(r||hij ||σ + ||pij ||σ)(wi − wj ) 
i∈I j=6 i X X X 

= − cwwi 
2 − adj(r||hij ||σ + ||pij||σ)(wi − wj)

2 (4.35) 
i∈I i∈I j=6 i∈I 

≤ 0. 

For (I), the monotonicity of H3h implies that the velocity constraint can be sat-

isfied if the initial energy is small, which can be realized by using appropriate ψ3, f3 

and switching condition. The detailed proof is exactly same with the proof of the 

statement (I) of Theorem 4.2.1. 

(II) can be shown, again using the monotonicity of H3h: if initially the Hamiltonian 

is small enough, there will not be enough energy for collision later. Specifically, if 

H3h(t3) < ψ3(||dmin||σ), there will not be any collision at any t ≥ t3. If it is not the 
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case, there exists t ∗ ≥ t3 such that H3h(t ∗) ≥ ψ3(||dmin||σ), which is contradictory to 

the fact that H3h is monotonically decreasing. 

(III) and (IV) can be proved by applying LaSalle’s invariance principle: all so-

˙ ˙lutions converge to the largest invariant set in the set where H3v = H3h = 0. The 

largest invariant set includes the equilibriums of the multi-agents system. Again we 

make the assumption that only the minimums of potential field are stable [1, 10, 12], 

then by the fact that the minimums of penitential field has the desired property, the 

proof is done. 

4.4 Switching Logic Design 

So far we have obtained three modes of control protocols, whose properties has 

been presented in Theorem 4.1.1, 4.2.1 and 4.3.1. In order to fulfill the global objec-

tives and constraints (O1)-(O4) with relatively mild requirement on the initial state, 

the next problem is to determine a switching logic. We will first review the key prop-

erties of each control mode and then propose a switching logic based on that. For 

convenience, we define the subsets Ω1, Ω2, Ω3 of the state space of the multi-agent 

system as 

Ω1 : V ∩ A 

1 
Ω2 : {H2 ≤ ṽ2} ∩ {H2 < ψ2(||dmin||σ) + Kψ2(||dmin||σ)} (4.36)

2 
1 

Ω3 : {H3h ≤ ṽ2} ∩ {H3h < ψ3(||dmin||σ)}
2 

where n o 
V = vi ∈ [vmin, vmax], ∀i ∈ I n 1 v̂ A = ||pij ||2 − { |vi − vj | + |θi − θj |

kv kθ 

1 vi + vj
+ ( − v̂)|θi − θj|} ≥ dmin,
kvkθ 2 

o 
∀i 6= j ∈ I 

(4.37) 

First, we see that if the multi-agent system starts from Ω1 and the control mode 1 

(4.2) is applied, the constraint on the horizontal velocity and collision avoidance will 

be satisfied, which has been verified by the statement (I) and (II) of Theorem 4.1.1. 
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In addition, for almost every initial state, the solution to the multi-agent system will 

converge to some subsets of Ω2 as long as f2 and ψ2 are well-designed, which has been 

verified in the proof of statement (I), (III) of Theorem 4.1.1 and the statement (I), 

(II) of Theorem 4.2.1. 

Then note that Ω2 is a invariant set if the control mode 2 (4.16) is applied. Within 

Ω2, the horizontal speed constraint and collision avoidance are automatically satisfied 

(see the statement (I) and (II) of Theorem 4.2.1). Furthermore, by the statement (III), 

(IV) of Theorem 4.2.1, almost every solution to the multi-agent system starting from 

Ω2 converges to some subsets of Ω3 as long as f3 and ψ3 are properly designed. 

Similarly, Ω3 is a invariant set if the control mode 3 (4.29) is applied. The hori-

zontal speed constraint and collision avoidance are satisfied if the multi-agent system 

states are in Ω3 by the statement (I), (II) of Theorem 4.3.1. Moreover, according to 

the statement (III) and (IV) of Theorem 4.3.1, the global objectives for convergence 

properties, (O3) and (O4), will be achieved. 

Based on the above discussion, the following state-dependent logic for controller 

switch is one of the possible solution to achieve all control objectives with relatively 

mild requirement on the initial state (i.e. x(t0) ∈ Ω1 ∪ Ω2 ∪ Ω3): 

Fig. 4.3. State-Dependent Switching Logic 
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Equivalently, if Xc ∈ Ω3, the controller mode 3 is triggered; if Xc ∈ Ω2 − Ω3, the 

controller mode 2 is triggered; otherwise Xc ∈ S − Ω2 ∪ Ω3, the controller mode is 

assigned to be 1. 

Remark 1 Some works on the hybrid control may allow the infinitely fast mode 

change, for example, the sliding mode control. The infinitely fast mode change is 

impossible in practice, and the chattering of the controller could cause undesired be-

havior. The works that allow the fast mode change, in general, assume the behavior 

of the system with fast mode change can be approximately achieved by setting dwell 

time or other techniques. Nonetheless, considering the latency in supervisor-aircraft 

communication and the computation/communication capability of the supervisor for 

a large-scale system, it is not very practical to allow the supervisor to perform mode 

transition too frequently. The proposed switching logic is designed based on the in-

variance properties, so the frequent mode change can be avoided. It has been shown 

that Ω2 and Ω3 are invariant sets under the control mode 2 and 3 respectively, thus 

theoretically there are only finitely many mode changes, which significantly reduces 

the effect of asynchronization of mode transition between aircraft in practice. 

Remark 2 It is totally fine to set a dwell time in the supervisor and (O1)-(O4) can 

still be guaranteed; in other words, the supervisor does not have to perform the algo-

rithm too frequently and respond to aircraft immediately. It has been proved that there 

is a subset of Ω2 that is invariant and attractive for almost every initial state under 

the control mode 1. It also has been proved that there is a subset of Ω3 that is designed 

to be invariant and attractive for almost every initial state under the control mode 2. 

Due to these facts, whenever the supervisor performs the switching logic, the result is 

consistent; whenever the group of the aircraft receive the switching signal, the require-

ment on the initial state for the next control mode is always satisfied. Therefore, even 

if the supervisor does not perform the algorithm at every moment or there is latency 

in the supervisor-agent communication, all control objectives and constraints can still 

be satisfied. 
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5. SIMULATION RESULTS 

In this section, the simulation results will be presented. Specifically, Three cases 

corresponding to different initial conditions are simulated in the following sections. 

In addition, two extra algorithms that could possibly be considered are also simulated 

for comparative analysis. The main purpose of the comparative analysis is to illustrate 

that the switching control structure and the extra degree of freedom can indeed relax 

the requirement on the initial state. 

The first control algorithm used for comparative analysis is nothing but only the 

mode 3 of the proposed hybrid flocking control algorithm. Recall that the mode 3 

of the proposed algorithm can actually address all control objectives and constraints, 

but it induces a stronger requirement on the initial state. Note that the control 

mode 3 for the horizontal motion subsystem just follows the artificial potential field 

method, and the control mode 3 for vertical subsystem is just a consensus algorithm 

for double-integrator dynamics. Thus the control mode 3 can be treated as a simple 

extension of some previous works, e.g., [1, 55]. We will show that the control mode 3 

without hybrid control structure is not directly applicable in some cases because the 

required condition on the initial state can be too strong to be achieved. 

The second control algorithm used for comparative analysis is similar to the pro-

posed algorithm. It is also a multi-stage strategy, but we do not allow the vertical 

separation, i.e., there are only the heading alignment stage and the control mode 3. 

The mode transition simply takes place when the headings and speeds are close to 

the desired value. This strategy could also be treated as a simple extension of some 

previous works, e.g., [39]. The reason for considering this algorithm is to illustrate the 

effect of using the third degree of freedom during the transient stage. As mentioned in 

the main result, the use of the extra degree of freedom will relax the requirement on 



⎪⎪
⎪⎪

33 

the initial state. In the third simulation case, we will illustrate that the requirement 

is much stronger if the vertical motion is prohibited. 

The parameters used in the simulation are summarized in the Table 5.1. Further-

more, the gradients of the artificial potential functions and the adjacency function 

used in the simulation are ⎧ ⎨ 10 tanh(0.025(d − 12.5)) , d ∈ [0, 12.5]
f1(d) = ,⎩ 0 , d > 12.5 ⎧ ⎨ 0.025 tanh(d − 11) , d ∈ [0, 11]
f2(d) = ,⎩ 0 , d > 11 ⎧ ⎨ (5.1)0.025 tanh(d − 10.5) , d ∈ [0, 10.5]
f3(d) = .⎩ 0 , d > 10.5 ⎧ 

1 , d ∈ [0, 5.25]⎪⎨ 
adj(d) = 0.5(1 + cos(π(d/10.5 − 0.5)/0.5)) , d ∈ [5.25, 10.5] . ⎪⎩ 0 , d > 10.5 

For the purpose of illustration, the constant K used in the mode 2 is simply N(N − 

1)/2. As mentioned before, the less conservative result can be obtained if a better 

approximation of K can be made. 
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Table 5.1. 
Parameters Used in the Simulation 

ˆParameters (for Objectives) dmin d r 

Value [Unit] 2 [m] 10 [m] 2 

� 

0.9 

Parameters (for Objectives) 

Value [Unit] 

vmin 

5 [m/s] 

vmax 

25 [m/s] 

v̂ 

15 [m/s] 

θ̂ 

0 [rad] 

Parameters (for Mode 1) 

Value [Unit] 

kv 

1 [1/s] 

kθ 

0.5 [1/s] 

kw 

0.5 [1/s] 

Parameters for Mode 2 

Value [Unit] 

kx 

0.1 [1/s] 

ky 

0.1 [1/s] 

kz 

0.5 [1/s] 

Parameters for Mode 3 

Value [Unit] 

cx 

0.1 [1/s] 

cy 

0.1 [1/s] 

cz 

0.1 [1/sˆ2] 

cw 

0.5 [1/s] 
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5.1 Case I 

The initial configuration for this case is basically randomly generated. Initially the 

agents are moderately separated in the horizontal direction but the velocity mismatch 

is large. The Figure 5.1 shows the initial pattern of agents. The plot of trajectories 

induced by the proposed algorithm is given in the Figure 5.2. Note that the different 

colors used in the trajectory plot stand for the different modes of control protocol 

during the process. Together with the Figure 5.3, one can conclude that there is no 

chattering. 
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Initial Condition for Case I

Fig. 5.1. Initial Configuration of Agents (for Case I) 

The Figure 5.4 plots the time histories of the maximum and the minimum hori-

zontal speeds among all agents. We can see that the horizontal speeds of all agents 

are bounded within the required interval. Collision avoidance and desire separations 

are achieved by using the proposed algorithm, which is shown in the Figure 5.5. In 

the same plot, we can also see that collision avoidance is not achieved using only the 

mode 3 of the control in this situation. It has been theoretically verified that the 

initial configuration of Case I satisfies the requirement of the proposed algorithm. 

However, the violation of collision avoidance implies that the initial configuration is 
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Fig. 5.2. Trajectories Induced by the Proposed Algorithm (for Case I) 
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Fig. 5.3. Time History of the Mode Transition (for Case I) 

not in the feasible set of the control mode 3. This explains the necessity of using the 

hybrid control structure. 
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Fig. 5.4. Time Histories of the Maximum and the Minimum Hor-
izontal Speeds Among All Agents (for Case I Using the Proposed 
Algorithm) 
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Fig. 5.5. The Minimum Separation Among All Pairs of Agents (for Case I) 



38 

5.2 Case II 

The initial pattern of agents for Case II is presented in the Figure 5.6. In this case, 

all agents are very close to their neighbors, and in addition, the headings of agents 

are opposite to the desired direction though there is no velocity mismatch between 

agents. The proposed algorithm is able to achieve all objectives and constraints, 

which is shown in the Figure 5.7, 5.8 and 5.9. However, from the Figure 5.9, we can 

see that the constraint on the horizontal speed is not satisfied if only the mode 3 of 

the control is applied. It has been theoretically verified that the initial configuration 

of Case II satisfies the requirement of the proposed algorithm, but the violation of 

speed constraint implies that the initial configuration is not in the feasible set of the 

control mode 3. This also explains the necessity of using the hybrid control structure. 
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Fig. 5.6. Initial Configuration of Agents (for Case II) 
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5.3 Case III 

The initial configuration of agents for Case III is given in the Figure 5.10. This case 

is used to illustrate the necessity of the extra degree of freedom for collision avoidance. 

In this case, the proposed algorithm can fulfill all objectives and constraints, which 

can be concluded from the Figure 5.11, 5.12 and 5.13. However, the simple multi-

stage control algorithm introduced at the beginning of this section cannot guarantee 

the collision avoidance, which can be concluded from the Figure 5.13. It can be 

theoretically verified that the initial configuration of Case III satisfies the requirement 

of the proposed algorithm, but the violation of collision avoidance implies that the 

initial configuration is not in the feasible set of initial states for the simple multi-stage 

control algorithm. This shows the necessity of using the third degree of freedom during 

the transient stage, also it explains how the efficient use of airspace is addressed by 

allowing the 3-D motion. 
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Fig. 5.10. Initial Configuration of Agents (for Case III) 
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Fig. 5.11. Trajectories Induced by the Proposed Algorithm (for Case III) 
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6. CONCLUSION 

This thesis has investigated the flocking control algorithm for a group of fixed-wing 

aircraft. Some practical concerns differentiate the fixed-wing aircraft flocking from 

general flocking problems, but none of the previous works have addressed these con-

cerns simultaneously. In this work, a supervisory decentralized flocking control algo-

rithm has been proposed to address the four practical concerns for fixed-wing aircraft 

flight, which include the nonholonomic constraint, the limitation of speed, collision 

avoidance and the efficient use of airspace. The proposed algorithm has been theo-

retically verified and numerically demonstrated. 

In chapter 4, the main idea of the proposed flocking algorithm is presented in 

detail. To relax the requirement on the initial state, the proposed control algorithm 

has the switching control structure, which consists of three modes of control protocol 

and a state-dependent switching logic. The artificial potential field method has been 

applied to design the three modes of control protocol, and it has been proved that 

the nonholonomic constraint, the limitation of speed and collision avoidance can be 

addressed successfully. The state-dependent switching logic guarantees the desired 

convergence properties for flocking and addresses the efficient use of airspace. Since 

the switching logic is designed based on the invariance properties, the supervisor does 

not need to perform switchings frequently and respond to the agents immediately, 

which reveals that the presence of dwell time or delay will not prevent the algorithm 

from achieving the objectives. 

In chapter 5, the simulation results of three different flocking scenarios are pre-

sented to illustrate the effect of using the extra degree of freedom and the switching 

control structure. In the first two cases, the proposed algorithm is compared with the 

algorithm that only consists of the control mode 3 of the proposed algorithm. The 

simulation results show that for the first two cases, all objectives and constraints can 



45 

be achieved by the proposed algorithm with the switched control structure, but either 

the limitations of speed or collision avoidance fails if only the control mode 3 without 

the hybrid control structure is applied. In the third case, the proposed algorithm is 

compared with another algorithm that consists of the control mode 1 and 3 with only 

the 2-dimensional motion allowed. The simulation results show that for the third 

case, all of the objectives and constraints can be fulfilled by the proposed algorithm, 

but collision avoidance is violated if the 3-dimensional motion is not allowed. 

The main contribution of the proposed algorithm is to addresses all aforemen-

tioned concerns simultaneously without too restrictive conditions on the initial state. 

For the future extension of the research, the possible directions include: (i) addressing 

flocking centering in an effective way based on the proposed framework; (ii) consid-

ering more performance indexes for the algorithm, for examples, the convergence 

rate, the capability to reject the disturbance; and (iii) investigating the decentralized 

schemes to perform the switching logic. 
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