100 research outputs found

    Systematic screening of long intergenic noncoding RNAs expressed during chicken embryogenesis

    Get PDF
    ABSTRACT: Long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes, including embryogenesis and development. To provide a systematic analysis of lncRNAs expressed during chicken embryogenesis, we used Iso-Seq and RNA-Seq to identify potential lncRNAs at embryonic stages from d 1 to d 8 of incubation: sequential stages covering gastrulation, somitogenesis, and organogenesis. The data characterized an expanded landscape of lncRNAs, yielding 45,410 distinct lncRNAs (31,282 genes). Amongst these, a set of 13,141 filtered intergenic lncRNAs (lincRNAs) transcribed from 9803 lincRNA gene loci, of which, 66.5% were novel, were further analyzed. These lincRNAs were found to share many characteristics with mammalian lincRNAs, including relatively short lengths, fewer exons, lower expression levels, and stage-specific expression patterns. Functional studies motivated by ā€œguilt-by-associationā€ associated individual lincRNAs with specific GO functions, providing an important resource for future studies of lincRNA function. Most importantly, a weighted gene co-expression network analysis suggested that genes of the brown module were specifically associated with the day 2 stage. LincRNAs within this module were co-expressed with proteins involved in hematopoiesis and lipid metabolism. This study presents the systematic identification of lincRNAs in developing chicken embryos and will serve as a powerful resource for the study of lincRNA functions

    Genetic improvement of duration of fertility in chickens and its commercial application for extending insemination intervals

    No full text
    ABSTRACT: The growth rate of chickens has made remarkable progress in recent decades through continuous breeding efforts. However, this advancement has also led to a decline in fertility among commercially bred chickens. Therefore, it is crucial to understand and improve factors that influence fertility to ensure the continued success of the industry. Here, we conduct a 3-generation selection experiment within 2 purebred female lines, with the aim of increasing the duration of fertility (DF). Duration of fertility refers to the length of time hens remain capable of producing fertilized eggs and is a crucial factor that directly impacts chick output. The results showed that significant genetic progress was achieved in embryo survival rates and the fertility duration day during both the peak and late laying periods. Moreover, after 3 generations of selective breeding, the disparities in embryo survival and chick health rates from setting eggs between 8-d and 5-d insemination intervals in the grandparent stock were significantly reduced. The rates decreased from 1.83% and 2.39 to 0.72% and 0.33%, respectively. Surprisingly, the hatching performances of hens with an 8-d interval were comparable to those hens that had not undergone genetic selection for DF and had a 5-d interval. We further discussed the possibility of extending the insemination interval to 8 d in parent stock for commercial practices. The parental populations exhibited remarkable performance in terms of percentages of embryo survival and healthy chicks from the setting eggs, with rates exceeding 94 and 90%, respectively. Thus, it can be inferred that an extended insemination interval is feasible by genetic selection for DF. These findings will provide valuable insights into the efficacy of genetic selection in enhancing DF and its practical application in commercial breeding programs

    Implications of Gene Inheritance Patterns on the Heterosis of Abdominal Fat Deposition in Chickens

    No full text
    Heterosis, a phenomenon characterized by the superior performance of hybrid individuals relative to their parents, has been widely utilized in livestock and crop breeding, while the underlying genetic basis remains elusive in chickens. Here, we performed a reciprocal crossing experiment with broiler and layer chickens and conducted RNA sequencing on liver tissues for reciprocal crosses and their parental lines to identify inheritance patterns of gene expression. Our results showed that heterosis of the abdominal fat percentage was 69.28%–154.71% in reciprocal crosses. Over-dominant genes of reciprocal crosses were significantly enriched in three biological pathways, namely, butanoate metabolism, the synthesis and degradation of ketone bodies, and valine, leucine, and isoleucine degradation. Among these shared over-dominant genes, we found that a lipid-related gene, HMGCL, was enriched in these pathways. Furthermore, we validated this gene as over-dominant using qRT-PCR. Although no shared significant pathway was detected in the high-parent dominant genes of reciprocal crosses, high-parent dominant gene expression was the major gene inheritance pattern in reciprocal crosses and we could not exclude the effect of high-parent dominant genes. These findings suggest that non-additive genes play important roles in the heterosis of important traits in chickens and have important implications regarding our understanding of heterosis

    Global Investigation of Cytochrome P450 Genes in the Chicken Genome

    No full text
    Cytochrome P450 (CYP) superfamily enzymes are broadly involved in a variety of physiological and toxicological processes. However, genome-wide analysis of this superfamily has never been investigated in the chicken genome. In this study, genome-wide analyses identified 45 chicken CYPs (cCYPs) from the chicken genome, and their classification and evolutionary relationships were investigated by phylogenetic, conserved protein motif, and gene structure analyses. The comprehensive evolutionary data revealed several remarkable characteristics of cCYPs, including the highly divergent and rapid evolution of the cCYPs, and the loss of cCYP2AF in the chicken genome. Furthermore, the cCYP expression profile was investigated by RNA-sequencing. The differential expression of cCYPs in developing embryos revealed the involvement of cCYPs in embryonic development. The significantly regulated cCYPs suggested its potential role in hepatic metabolism. Additionally, 11 cCYPs, including cCYP2AC1, cCYP2C23a, and cCYP2C23b, were identified as estrogen-responsive genes, which indicates that these cCYPs are involved in the estrogen-signaling pathway. Meanwhile, an expression profile analysis highlights the divergent role of different cCYPs. These data expand our view of the phylogeny and evolution of cCYPs, provide evolutionary insight, and can help elucidate the roles of cCYPs in physiological and toxicological processes in chicken

    Temporal Expression of Myogenic Regulatory Genes in Different Chicken Breeds during Embryonic Development

    No full text
    The basic units of skeletal muscle in all vertebrates are multinucleate myofibers, which are formed from the fusion of mononuclear myoblasts during the embryonic period. In order to understand the regulation of embryonic muscle development, we selected four chicken breeds, namely, Cornish (CN), White Plymouth Rock (WPR), White Leghorn (WL), and Beijing-You Chicken (BYC), for evaluation of their temporal expression patterns of known key regulatory genes (Myomaker, MYOD, and MSTN) during pectoral muscle (PM) and thigh muscle (TM) development. The highest expression level of Myomaker occurred from embryonic days E13 to E15 for all breeds, indicating that it was the crucial stage of myoblast fusion. Interestingly, the fast-growing CN showed the highest gene expression level of Myomaker during the crucial stage. The MYOD gene expression at D1 was much higher, implying that MYOD might have an important role after hatching. Histomorphology of PM and TM suggested that the myofibers was largely complete at E17, which was speculated to have occurred because of the expression increase in MSTN and the expression decrease in Myomaker. Our research contributes to lay a foundation for the study of myofiber development during the embryonic period in different chicken breeds

    Genome-wide Association Analysis of Age-Dependent Egg Weights in Chickens

    No full text
    The raw data could support our manuscript of "Genome-wide association analysis of age-dependent egg weights in chickens". Any qualified researcher could use the data after our agreement.<br

    Genome-Wide Detection of Selective Signatures in Chicken through High Density SNPs - Fig 1

    No full text
    <p>The distribution of the size of haplotypes and the number of SNPs in the core regions (a) and (b).</p

    Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study.

    No full text
    Egg number (EN), egg laying rate (LR) and age at first egg (AFE) are important production traits related to egg production in poultry industry. To better understand the knowledge of genetic architecture of dynamic EN during the whole laying cycle and provide the precise positions of associated variants for EN, LR and AFE, laying records from 21 to 72 weeks of age were collected individually for 1,534 F2 hens produced by reciprocal crosses between White Leghorn and Dongxiang Blue-shelled chicken, and their genotypes were assayed by chicken 600 K Affymetrix high density genotyping arrays. Subsequently, pedigree and SNP-based genetic parameters were estimated and a genome-wide association study (GWAS) was conducted on EN, LR and AFE. The heritability estimates were similar between pedigree and SNP-based estimates varying from 0.17 to 0.36. In the GWA analysis, we identified nine genome-wide significant loci associated with EN of the laying periods from 21 to 26 weeks, 27 to 36 weeks and 37 to 72 weeks. Analysis of GTF2A1 and CLSPN suggested that they influenced the function of ovary and uterus, and may be considered as relevant candidates. The identified SNP rs314448799 for accumulative EN from 21 to 40 weeks on chromosome 5 created phenotypic differences of 6.86 eggs between two homozygous genotypes, which could be potentially applied to the molecular breeding for EN selection. Moreover, our finding showed that LR was a moderate polygenic trait. The suggestive significant region on chromosome 16 for AFE suggested the relationship between sex maturity and immune in the current population. The present study comprehensively evaluates the role of genetic variants in the development of egg laying. The findings will be helpful to investigation of causative genes function and future marker-assisted selection and genomic selection in chickens

    Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing

    No full text
    <div><p>Insertion and deletion (INDEL) is one of the main events contributing to genetic and phenotypic diversity, which receives less attention than SNP and large structural variation. To gain a better knowledge of INDEL variation in chicken genome, we applied next generation sequencing on 12 diverse chicken breeds at an average effective depth of 8.6. Over 1.3 million non-redundant short INDELs (1ā€“49 bp) were obtained, the vast majority (92.48%) of which were novel. Follow-up validation assays confirmed that most (88.00%) of the randomly selected INDELs represent true variations. The majority (95.76%) of INDELs were less than 10 bp. Both the detected number and affected bases were larger for deletions than insertions. In total, INDELs covered 3.8 Mbp, corresponding to 0.36% of the chicken genome. The average genomic INDEL density was estimated as 0.49 per kb. INDELs were ubiquitous and distributed in a non-uniform fashion across chromosomes, with lower INDEL density in micro-chromosomes than in others, and some functional regions like exons and UTRs were prone to less INDELs than introns and intergenic regions. Nearly 620,253 INDELs fell in genic regions, 1,765 (0.28%) of which located in exons, spanning 1,358 (7.56%) unique Ensembl genes. Many of them are associated with economically important traits and some are the homologues of human disease-related genes. We demonstrate that sequencing multiple individuals at a medium depth offers a promising way for reliable identification of INDELs. The coding INDELs are valuable candidates for further elucidation of the association between genotypes and phenotypes. The chicken INDELs revealed by our study can be useful for future studies, including development of INDEL markers, construction of high density linkage map, INDEL arrays design, and hopefully, molecular breeding programs in chicken.</p></div
    • ā€¦
    corecore