152 research outputs found

    Intrusion of polyethylene glycol into solid-state nanopores

    Get PDF
    The intrusion of PEG aqueous solution into solid-state-nanopores upon mechanical pressure is experimentally investigated. By using hydrophobic nanoporous silica with a broad range of pore sizes, the characteristic size of PEG chains in water while penetrating nanopores is measured and analyzed, which increases with molecular weight and decreases with concentration of PEG. Its sensitivity to molecular weight is relatively limited due to nano-confinement. The inclusion of PEG as an intruding liquid imposes a rate effect on the intrusion pressure, and inhibits the extrusion from the nanopores

    Rate effect of liquid infiltration into mesoporous materials

    Get PDF
    Rate effect of liquid infiltration in mesopores is associated with both liquid viscosity and the solid–liquid interfacial effect.</p

    Elastomeric cellular structure enhanced by compressible liquid filler

    Get PDF
    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated

    Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification

    Full text link
    Different aspects of a clinical sample can be revealed by multiple types of omics data. Integrated analysis of multi-omics data provides a comprehensive view of patients, which has the potential to facilitate more accurate clinical decision making. However, omics data are normally high dimensional with large number of molecular features and relatively small number of available samples with clinical labels. The "dimensionality curse" makes it challenging to train a machine learning model using high dimensional omics data like DNA methylation and gene expression profiles. Here we propose an end-to-end deep learning model called OmiVAE to extract low dimensional features and classify samples from multi-omics data. OmiVAE combines the basic structure of variational autoencoders with a classification network to achieve task-oriented feature extraction and multi-class classification. The training procedure of OmiVAE is comprised of an unsupervised phase without the classifier and a supervised phase with the classifier. During the unsupervised phase, a hierarchical cluster structure of samples can be automatically formed without the need for labels. And in the supervised phase, OmiVAE achieved an average classification accuracy of 97.49% after 10-fold cross-validation among 33 tumour types and normal samples, which shows better performance than other existing methods. The OmiVAE model learned from multi-omics data outperformed that using only one type of omics data, which indicates that the complementary information from different omics datatypes provides useful insights for biomedical tasks like cancer classification.Comment: 7 pages, 4 figure

    Unsupervised Annotation of Phenotypic Abnormalities via Semantic Latent Representations on Electronic Health Records

    Full text link
    The extraction of phenotype information which is naturally contained in electronic health records (EHRs) has been found to be useful in various clinical informatics applications such as disease diagnosis. However, due to imprecise descriptions, lack of gold standards and the demand for efficiency, annotating phenotypic abnormalities on millions of EHR narratives is still challenging. In this work, we propose a novel unsupervised deep learning framework to annotate the phenotypic abnormalities from EHRs via semantic latent representations. The proposed framework takes the advantage of Human Phenotype Ontology (HPO), which is a knowledge base of phenotypic abnormalities, to standardize the annotation results. Experiments have been conducted on 52,722 EHRs from MIMIC-III dataset. Quantitative and qualitative analysis have shown the proposed framework achieves state-of-the-art annotation performance and computational efficiency compared with other methods.Comment: Accepted by BIBM 2019 (Regular

    Aggregate Model of District Heating Network for Integrated Energy Dispatch: A Physically Informed Data-Driven Approach

    Full text link
    The district heating network (DHN) is essential in enhancing the operational flexibility of integrated energy systems (IES). Yet, it is hard to obtain an accurate and concise DHN model for the operation owing to complicated network features and imperfect measurement. Considering this, this paper proposes a physically informed data-driven aggregate model (AGM) for DHN, providing a concise description of the source-load relationship of DHN without exposing network details. First, we derive the analytical relationship between the state variables of the source and load nodes of DHN, offering a physical fundament for the AGM. Second, we propose a physics-informed estimator for AGM that is robust to low-quality measurement, in which the physical constraints associated with the parameter normalization and sparsity are embedded to improve the accuracy and robustness. Finally, we propose a physics-enhanced algorithm to solve the nonlinear estimator with non-closed constraints efficiently. Simulation results verify the effectiveness of the proposed method

    Neurogenesis Potential Evaluation and Transcriptome Analysis of Fetal Hypothalamic Neural Stem/Progenitor Cells With Prenatal High Estradiol Exposure

    Get PDF
    High maternal estradiol is reported to induce metabolic disorders by modulating hypothalamic gene expression in offspring. Since neurogenesis plays a crucial role during hypothalamus development, we explored whether prenatal high estradiol exposure (HE) affects proliferation and differentiation of fetal hypothalamic neural stem/progenitor cells (NSC/NPCs) in mice and performed RNA sequencing to identify the critical genes involved. NSC/NPCs in HE mice presented attenuated cell proliferation but increased neuronal differentiation in vitro compared with control (NC) cells. Gene set enrichment analysis of mRNA profiles indicated that genes downregulated in HE NSC/NPCs were enriched in neurogenesis-related Gene Ontology (GO) terms, while genes upregulated in HE NSC/NPCs were enriched in response to estradiol. Protein-protein interaction analysis of genes with core enrichment in GO terms of neurogenesis and response to estradiol identified 10 Hub mRNAs, among which three were potentially correlated with six differentially expressed (DE) lncRNAs based on lncRNA profiling and co-expression analysis. These findings offer important insights into developmental modifications in hypothalamic NSC/NPCs and may provide new clues for further investigation on maternal environment programmed neural development disorders
    • …
    corecore