5,242 research outputs found

    Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    Get PDF
    Self-assembled GaInNAs quantum dots (QDs) were grown on GaAs (001) substrate using solid-source molecular-beam epitaxy (SSMBE) equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM), photoluminescence (PL), and transmission electron microscopy (TEM) measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW) operation at room temperature (RT) with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2) at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2), with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C

    Influence of nitrogen on tunneling barrier heights and effective masses of electrons and holes at lightly-nitrided SiO2/Si interface

    Get PDF
    We have determined both the effective masses and the barrier heights for electrons and holes in pure SiO2 and lightly nitrided oxides with various nitrogen concentrations up to 4.5 at %. In contrast to previous studies which were usually carried out by assuming a value for either the effective mass or the barrier height, this study does not make such an assumption. The approach is proven to be reliable by examining the result for the well-studied pure SiO2 thin films. It is observed that with the increase of the nitrogen concentration the effective masses increase while both the barrier heights and the energy gap decrease. © 2004 American Institute of Physics.published_or_final_versio

    The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites

    Get PDF
    Author name used in this publication: J. X. ZhangAuthor name used in this publication: J. Y. DaiAuthor name used in this publication: C. L. SunAuthor name used in this publication: C. Y. LoAuthor name used in this publication: S. W. OrAuthor name used in this publication: H. L. W. Chan2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Glucose lowering effect of transgenic human insulin-like growth factor-I from rice: in vitro and in vivo studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains.</p> <p>Results</p> <p>The plant-codon-optimized hIGF-I was introduced into rice via <it>Agrobacterium</it>-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. <it>In vitro </it>functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats.</p> <p>Conclusion</p> <p>Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I.</p

    Fluorescence-based chemical tools for monitoring ultrasound-induced hydroxyl radical production in aqueous solution and in cells

    Get PDF
    We report the synthesis of hydroxyl-radical (˙OH) responsive fluorescent probes that utilise the 3,5-dihydroxybenzyl (DHB) functionality. 4-Methylumbeliferone-DHB (Umb-DHB) and resorufin-DHB (Res-DHB) in the presence of ˙OH radicals resulted in significant increases in their respective fluorescent emission intensities at 460 nm and 585 nm. The incubation of Res-DHB in HeLa cells followed by therapeutic ultrasound (1 MHz) resulted in a significant increase in fluorescence emission intensity thus permitting the ability to monitor ultrasound-induced ˙OH production in live cells

    Effect of short-acting beta blocker on the cardiac recovery after cardiopulmonary bypass

    Get PDF
    The objective of this study was to investigate the effect of beta blocker on cardiac recovery and rhythm during cardiac surgeries. Sixty surgical rheumatic heart disease patients were received esmolol 1 mg/kg or the same volume of saline prior to removal of the aortic clamp. The incidence of cardiac automatic re-beat, ventricular fibrillation after reperfusion, the heart rate after steady re-beat, vasoactive drug use during weaning from bypass, the posterior parallel time and total bypass time were decreased by esmolol treatment. In conclusion: Esmolol has a positive effect on the cardiac recovery in cardiopulmonary bypass surgeries

    Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast

    Get PDF
    Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation
    corecore