122,318 research outputs found

    Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region

    Full text link
    Recent experiments have confirmed the existence of rotational bands in the A \~ 110 mass region with very extended shapes lying between super- and hyper-deformation. Using the projected shell model, we make a first attempt to describe quantitatively such a band structure in 108Cd. Excellent agreement is achieved in the dynamic moment of inertia J(2) calculation. This allows us to suggest the spin values for the energy levels, which are experimentally unknown. It is found that at this large deformation, the sharply down-sloping orbitals in the proton i_{13/2} subshell are responsible for the irregularity in the experimental J(2), and the wave functions of the observed states have a dominant component of two-quasiparticles from these orbitals. Measurement of transition quadrupole moments and g-factors will test these findings, and thus can provide a deeper understanding of the band structure at very extended shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a Rapid Communicatio

    Coexistence of superconductivity and charge-density-wave domain in 1T1T-Fex_xTa1x_{1-x}SSe

    Full text link
    A series of 1T1T-Fex_xTa1x_{1-x}SSe (0 x\leq x \leq 0.1) single crystals was fabricated via the chemical-vapor-transport (CVT) method and investigated by structure, transport, and magnetic measurements along with the density-functional-theory (DFT) calculations. The superconductivity (SC) in parent 1T1T-TaSSe can be gradually suppressed by Fe-substitution (x0.03x\leq0.03), accompanied by the disappearance of charge-density-wave (CDW). DFT calculations show that the Fe-substitution effectively inhibits the CDW superstructure and thereby the CDW domains are destroyed. With further increasing xx (x>0.03x>0.03), the disorder-induced scattering increases, and the system enters into the possible Anderson localization (AL) state. Our results prove the SC develops in the CDW phase and coexists with the CDW domain in 1T1T-TaSSe system

    Electrically driven magnetism on a Pd thin film

    Get PDF
    Using first-principles density functional calculations we demonstrate that ferromagnetism can be induced and modulated on an otherwise paramagnetic Pd metal thin-film surface through application of an external electric field. As free charges are either accumulated or depleted at the Pd surface to screen the applied electric field there is a corresponding change in the surface density of states. This change can be made sufficient for the Fermi-level density of states to satisfy the Stoner criterion, driving a transition locally at the surface from a paramagnetic state to an itinerant ferromagnetic state above a critical applied electric field, Ec. Furthermore, due to the second-order nature of this transition, the surface magnetization of the ferromagnetic state just above the transition exhibits a substantial dependence on electric field, as the result of an enhanced magnetoelectric susceptibility. Using a linearized Stoner model we explain the occurrence of the itinerant ferromagnetism and demonstrate that the magnetic moment on the Pd surface follows a square-root variation with electric field consistent with our first-principles calculations.Comment: 8 pages, 7 figure

    The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766

    Full text link
    Aims. We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods. The extraneous eclipses on the \textit{kepler} binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results. Three binaries with extraneous eclipses on the binary light curves were found and studied based on the \textit{Kepler} observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1)862.1(\pm0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13)0.060(13) and 0.0564(18)0.0564(18)), similar mean primary densities (0.3264(42)  ρ0.3264(42)\;\rho_\odot and 0.3019(28)  ρ0.3019(28)\;\rho_\odot), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73\sim120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.Comment: 10 pages, 5 figure

    Transfer-matrix renormalization group study of the spin ladders with cyclic four-spin interactions

    Full text link
    The temperature dependence of the specific heat and spin susceptibility of the spin ladders with cyclic four-spin interactions in the rung-singlet phase is explored by making use of the transfer-matrix renormalization group method. The values of spin gap are extracted from the specific heat and susceptibility, respectively. It is found that for different relative strength between interchain and intrachain interactions, the spin gap is approximately linear with the cyclic four-spin interaction in the region far away from the critical point. Furthermore, we show that the dispersion for the one-triplet magnon branch can be obtained by numerically fitting on the partition function.Comment: 7 pages, 7 figures, 1 tabl

    A Semi-Blind Source Separation Method for Differential Optical Absorption Spectroscopy of Atmospheric Gas Mixtures

    Full text link
    Differential optical absorption spectroscopy (DOAS) is a powerful tool for detecting and quantifying trace gases in atmospheric chemistry \cite{Platt_Stutz08}. DOAS spectra consist of a linear combination of complex multi-peak multi-scale structures. Most DOAS analysis routines in use today are based on least squares techniques, for example, the approach developed in the 1970s uses polynomial fits to remove a slowly varying background, and known reference spectra to retrieve the identity and concentrations of reference gases. An open problem is to identify unknown gases in the fitting residuals for complex atmospheric mixtures. In this work, we develop a novel three step semi-blind source separation method. The first step uses a multi-resolution analysis to remove the slow-varying and fast-varying components in the DOAS spectral data matrix XX. The second step decomposes the preprocessed data X^\hat{X} in the first step into a linear combination of the reference spectra plus a remainder, or X^=AS+R\hat{X} = A\,S + R, where columns of matrix AA are known reference spectra, and the matrix SS contains the unknown non-negative coefficients that are proportional to concentration. The second step is realized by a convex minimization problem S=argminnorm(X^AS)S = \mathrm{arg} \min \mathrm{norm}\,(\hat{X} - A\,S), where the norm is a hybrid 1/2\ell_1/\ell_2 norm (Huber estimator) that helps to maintain the non-negativity of SS. The third step performs a blind independent component analysis of the remainder matrix RR to extract remnant gas components. We first illustrate the proposed method in processing a set of DOAS experimental data by a satisfactory blind extraction of an a-priori unknown trace gas (ozone) from the remainder matrix. Numerical results also show that the method can identify multiple trace gases from the residuals.Comment: submitted to Journal of Scientific Computin
    corecore