19 research outputs found

    The utility of an AMR dictionary as an educational tool to improve public understanding of antimicrobial resistance

    Get PDF
    Background: Communicating about antimicrobial resistance (AMR) to the public is challenging.   Methods: We developed a dictionary of terms commonly used to communicate about AMR. For each term, we developed learning points to explain AMR and related concepts in plain language.  We conducted a pilot evaluation in 374 high school students in Ubon Ratchathani, Thailand. In three 50-minute sessions, students were asked to answer five true/false questions using a paper-based questionnaire. The first session assessed their understanding of AMR at baseline, the second after searching the internet, and the third after the provision of the printed AMR dictionary and its web address.    Results: We developed the AMR dictionary as a web-based application (www.amrdictionary.net). The Thai version of the AMR dictionary included 35 terms and associated learning points, seven figures displaying posters promoting AMR awareness in Thailand, and 66 recommended online videos. In the pretest, the proportion of correct responses to each question ranged from 10% to 57%; 10% of the students correctly answered that antibiotics cannot kill viruses and 57% correctly answered that unnecessary use of antibiotics makes them ineffective. After the internet searches, the proportions of correct answers increased, ranging from 62% to 89% (all p&lt;0.001). After providing the AMR dictionary, the proportions of correct answers increased further, ranging from 79% to 89% for three questions (p&lt;0.001), and did not change for one question (p=0.15). Correct responses as to whether taking antibiotics often has side-effects such as diarrhoea reduced from 85% to 74% (p&lt;0.001). The dictionary was revised based on the findings and comments received. Conclusions: Understanding of AMR among Thai high school students is limited. The AMR dictionary can be a useful supportive tool to increase awareness and improve understanding of AMR. Our findings support the need to evaluate the effectiveness of communication tools in the real-world setting.</ns3:p

    Print Advertisements for Alzheimer’s Disease Drugs

    No full text

    Impact of low blood culture usage on rates of antimicrobial resistance.

    No full text
    Objectives The magnitude of impact caused by low blood culture utilization on estimates of the proportions and incidence rates of antimicrobial-resistant (AMR) bacterial infections is largely unknown. Methods We used routine electronic databases of microbiology, hospital admission and drug prescription at Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand, from 2011 to 2015, and bootstrap simulations. Results The proportions of Escherichia coli and Klebsiella pneumoniae bacteraemias caused by 3rd generation cephalosporin resistant isolates (3GCREC and 3GCRKP) were estimated to increase by 13 and 24 percentage points (from 44% to 57% and from 51% to 75%), respectively, if blood culture utilization rate was reduced from 82 to 26 blood culture specimens per 1,000 patient-days. Among patients with hospital-origin bloodstream infections, the proportion of 3GCREC and 3GCRKP whose first positive blood culture was taken within ±1 calendar day of the start of a parenteral antibiotic at the study hospital was substantially lower than those whose first positive blood culture was taken later into parenteral antibiotic treatment (30% versus 79%, p Conclusion Impacts of low blood culture utilization rate on the estimated proportions and incidence rates of AMR infections could be high. We recommend that AMR surveillance reports should additionally include blood culture utilization rate and stratification by exposure to a parenteral antibiotic at the hospital.</p

    Effect of point-of-care C-reactive protein testing on antibiotic prescription in febrile patients attending primary care in Thailand and Myanmar: an open-label, randomised, controlled trial

    No full text
    Background In southeast Asia, antibiotic prescription in febrile patients attending primary care is common, and a probable contributor to the high burden of antimicrobial resistance. The objective of this trial was to explore whether C-reactive protein (CRP) testing at point of care could rationalise antibiotic prescription in primary care, comparing two proposed thresholds to classify CRP concentrations as low or high to guide antibiotic treatment. Methods We did a multicentre, open-label, randomised, controlled trial in participants aged at least 1 year with a documented fever or a chief complaint of fever (regardless of previous antibiotic intake and comorbidities other than malignancies) recruited from six public primary care units in Thailand and three primary care clinics and one outpatient department in Myanmar. Individuals were randomly assigned using a computer-based randomisation system at a ratio of 1:1:1 to either the control group or one of two CRP testing groups, which used thresholds of 20 mg/L (group A) or 40 mg/L CRP (group B) to guide antibiotic prescription. Health-care providers were masked to allocation between the two intervention groups but not to the control group. The primary outcome was the prescription of any antibiotic from day 0 to day 5 and the proportion of patients who were prescribed an antibiotic when CRP concentrations were above and below the 20 mg/L or 40 mg/L thresholds. The primary outcome was analysed in the intention-to-treat and per-protocol populations. The trial is registered with ClinicalTrials.gov, number NCT02758821, and is now completed. Findings Between June 8, 2016, and Aug 25, 2017, we recruited 2410 patients, of whom 803 patients were randomly assigned to CRP group A, 800 to CRP group B, and 807 to the control group. 598 patients in CRP group A, 593 in CRP group B, and 767 in the control group had follow-up data for both day 5 and day 14 and had been prescribed antibiotics (or not) in accordance with test results (per-protocol population). During the trial, 318 (39%) of 807 patients in the control group were prescribed an antibiotic by day 5, compared with 290 (36%) of 803 patients in CRP group A and 275 (34%) of 800 in CRP group B. The adjusted odds ratio (aOR) of 0·80 (95% CI 0·65–0·98) and risk difference of −5·0 percentage points (95% CI −9·7 to −0·3) between group B and the control group were significant, although lower than anticipated, whereas the reduction in prescribing in group A compared with the control group was not significant (aOR 0·86 [0·70–1·06]; risk difference −3·3 percentage points [–8·0 to 1·4]). Patients with high CRP concentrations in both intervention groups were more likely to be prescribed an antibiotic than in the control group (CRP ≥20 mg/L: group A vs control group, p&lt;0·0001; CRP ≥40 mg/L: group B vs control group, p&lt;0·0001), and those with low CRP concentrations were more likely to have an antibiotic withheld (CRP &lt;20 mg/L: group A vs control group, p&lt;0·0001; CRP &lt;40 mg/L: group B vs control group, p&lt;0·0001). 24 serious adverse events were recorded, consisting of 23 hospital admissions and one death, which occurred in CRP group A. Only one serious adverse event was thought to be possibly related to the study (a hospital admission in CRP group A). Interpretation In febrile patients attending primary care, testing for CRP at point of care with a threshold of 40 mg/L resulted in a modest but significant reduction in antibiotic prescribing, with patients with high CRP being more likely to be prescribed an antibiotic, and no evidence of a difference in clinical outcomes. This study extends the evidence base from lower-income settings supporting the use of CRP tests to rationalise antibiotic use in primary care patients with an acute febrile illness. A key limitation of this study is the individual rather than cluster randomised study design which might have resulted in contamination between the study groups, reducing the effect size of the intervention

    Effect of point-of-care C-reactive protein testing on antibiotic prescription in febrile patients attending primary care in Thailand and Myanmar: an open-label, randomised, controlled trial

    No full text
    Background In southeast Asia, antibiotic prescription in febrile patients attending primary care is common, and a probable contributor to the high burden of antimicrobial resistance. The objective of this trial was to explore whether C-reactive protein (CRP) testing at point of care could rationalise antibiotic prescription in primary care, comparing two proposed thresholds to classify CRP concentrations as low or high to guide antibiotic treatment. Methods We did a multicentre, open-label, randomised, controlled trial in participants aged at least 1 year with a documented fever or a chief complaint of fever (regardless of previous antibiotic intake and comorbidities other than malignancies) recruited from six public primary care units in Thailand and three primary care clinics and one outpatient department in Myanmar. Individuals were randomly assigned using a computer-based randomisation system at a ratio of 1:1:1 to either the control group or one of two CRP testing groups, which used thresholds of 20 mg/L (group A) or 40 mg/L CRP (group B) to guide antibiotic prescription. Health-care providers were masked to allocation between the two intervention groups but not to the control group. The primary outcome was the prescription of any antibiotic from day 0 to day 5 and the proportion of patients who were prescribed an antibiotic when CRP concentrations were above and below the 20 mg/L or 40 mg/L thresholds. The primary outcome was analysed in the intention-to-treat and per-protocol populations. The trial is registered with ClinicalTrials.gov, number NCT02758821, and is now completed. Findings Between June 8, 2016, and Aug 25, 2017, we recruited 2410 patients, of whom 803 patients were randomly assigned to CRP group A, 800 to CRP group B, and 807 to the control group. 598 patients in CRP group A, 593 in CRP group B, and 767 in the control group had follow-up data for both day 5 and day 14 and had been prescribed antibiotics (or not) in accordance with test results (per-protocol population). During the trial, 318 (39%) of 807 patients in the control group were prescribed an antibiotic by day 5, compared with 290 (36%) of 803 patients in CRP group A and 275 (34%) of 800 in CRP group B. The adjusted odds ratio (aOR) of 0·80 (95% CI 0·65–0·98) and risk difference of −5·0 percentage points (95% CI −9·7 to −0·3) between group B and the control group were significant, although lower than anticipated, whereas the reduction in prescribing in group A compared with the control group was not significant (aOR 0·86 [0·70–1·06]; risk difference −3·3 percentage points [–8·0 to 1·4]). Patients with high CRP concentrations in both intervention groups were more likely to be prescribed an antibiotic than in the control group (CRP ≥20 mg/L: group A vs control group, p<0·0001; CRP ≥40 mg/L: group B vs control group, p<0·0001), and those with low CRP concentrations were more likely to have an antibiotic withheld (CRP <20 mg/L: group A vs control group, p<0·0001; CRP <40 mg/L: group B vs control group, p<0·0001). 24 serious adverse events were recorded, consisting of 23 hospital admissions and one death, which occurred in CRP group A. Only one serious adverse event was thought to be possibly related to the study (a hospital admission in CRP group A). Interpretation In febrile patients attending primary care, testing for CRP at point of care with a threshold of 40 mg/L resulted in a modest but significant reduction in antibiotic prescribing, with patients with high CRP being more likely to be prescribed an antibiotic, and no evidence of a difference in clinical outcomes. This study extends the evidence base from lower-income settings supporting the use of CRP tests to rationalise antibiotic use in primary care patients with an acute febrile illness. A key limitation of this study is the individual rather than cluster randomised study design which might have resulted in contamination between the study groups, reducing the effect size of the intervention
    corecore