1,188 research outputs found

    A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures.

    Get PDF
    60 p

    Interspersed Homologous DNA of Autographa californica Nuclear Polyhedrosis Virus Enhances Delayed-Early Gene Expression

    Get PDF
    The five regions of homologous DNA which are interspersed in the genome of the baculovirus Autographa californica nuclear polyhedrosis virus increased the expression of a delayed-early gene of this virus. Although this activity was first observed as a 10-fold trans effect, the homologous region 5 (hr5) enhanced the expression of linked genes 1,000-fold. The hr5 enhancer also exhibited the other characteristics associated with viral enhancer elements, including orientation independence and the abilities to function at a distance from the linked promoter, to regulate heterologous promoters, and to increase the number of RNA polymerase molecules transcribing the linked genes. The expression of the immediate-early regulatory gene was not enhanced by cis-linked hr5, although the enhancer function may require the immediate-early regulatory gene product. The hr5 enhancer was relatively insensitive to competition by an excess of enhancer molecules. The nucleotide sequence of hr5 revealed two different conserved repeats separated by nonhomologous DNA. Deletion analysis of the hr5 enhancer indicated that a 30-base-pair inverted repeat was essential for enhancer function

    Biosynthesis and Localization of the Autographa californica Nuclear Polyhedrosis Virus 25K Gene Product

    Get PDF
    AbstractMutations of the AcMNPV 25K gene are associated with the "few polyhedra" phenotype (M. J. Fraser et al., 1983, J. Virol. 47, 287 300; B. Beames and M. D. Summers, 1989, Virology 168, 344-353). Polyclonal antisera was produced and used to investigate the time course of expression and localization of the 25K protein in infected cells. Western blot analysis detected 25K protein in both cytosolic and nuclear extracts from 18-24 hr p.i. through 96 hr p.i, and also in purified viral occlusions, but not in purified virions. Immunogold electron microscopy revealed that 25K protein was predominantly associated with amorphous cytoplasmic structures and to a lesser extent with a more electron-dense structure in the nucleus. Viral occlusions in cell sections were not specifically labeled by 25K antibody. Observations of purified viral occlusions and nuclei prepared for immungold EM revealed the presence of contaminating amorphous material that was labeled with 25K antibody

    Identification of BV/ODV-C42, an Autographa californica Nucleopolyhedrovirus orf101-Encoded Structural Protein Detected in Infected-Cell Complexes with ODV-EC27 and p78/83

    Get PDF
    orf101 is a late gene of Autographa californica nucleopolyhedrovirus (AcMNPV). It encodes a protein of 42 kDa which is a component of the nucleocapsid of budded virus (BV) and occlusion-derived virus (ODV). To reflect this viral localization, the product of orf101 was named BV/ODV-C42 (C42). C42 is predominantly detected within the infected-cell nucleus: at 24 h postinfection (p.i.), it is coincident with the virogenic stroma, but by 72 h p.i., the stroma is minimally labeled while C42 is more uniformly located throughout the nucleus. Yeast two-hybrid screens indicate that C42 is capable of directly interacting with the viral proteins p78/83 (1629K) and ODV-EC27 (orf144). These interactions were confirmed using blue native gels and Western blot analyses. At 28 h p.i., C42 and p78/83 are detected in two complexes: one at approximately 180 kDa and a high-molecular-mass complex (500 to 600 kDa) which also contains EC27

    Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations Within the Polyhedrin Gene

    Get PDF
    We describe a method to introduce site-specific mutations into the genome of Autographa californica nuclear polyhedrosis virus. Specifically, the A. californica nuclear polyhedrosis virus gene for polyhedrin, the major protein that forms viral occlusions in infected cells, was mutagenized by introducing deletions into the cloned DNA fragment containing the gene. The mutagenized polyhedrin gene was transferred to the intact viral DNA by mixing fragment and viral DNAs, cotransfecting Spodoptera frugiperda cells, and screening for viral recombinants that had undergone allelic exchange. Recombinant viruses with mutant polyhedrin genes were obtained by selecting the progeny virus that did not produce viral occlusions in infected cells (occlusion-negative mutants). Analyses of occlusion-negative mutants demonstrated that the polyhedrin gene was not essential for the production of infectious virus and that deletion of certain sequences within the gene did not alter the control, or decrease the level of expression, of polyhedrin. An early viral protein of 25,000 molecular weight was apparently not essential for virus replication in vitro, as the synthesis of this protein was not detected in cells infected with a mutant virus

    Effects of Deletion and Overexpression of the Autographa californica Nuclear Polyhedrosis Virus FP25K Gene on Synthesis of Two Occlusion-Derived Virus Envelope Proteins and Their Transport into Virus-Induced Intranuclear Membranes

    Get PDF
    Partial deletions within Autographa californica open reading frame 61 (FP25K) alter the expression and accumulation profile of several viral proteins and the transport of occlusion-derived virus (ODV)-E66 to intranuclear membranes during infection (S. C. Braunagel et al., J. Virol. 73:8559–8570, 1999). Here we show the effects of a full deletion and overexpression of FP25K on the transport and expression of two ODV envelope proteins, ODV-E66 (E66) and ODV-E25 (E25). Deletion and overexpression of FP25K substantially altered the levels of expression of E66 during infection. Compared with cells infected with wild-type (wt) virus, the levels of E66 were reduced fivefold in cells infected with a viral mutant lacking FP25K (ΔFP25K) and were slightly increased in cells infected with a viral mutant overexpressing FP25K (FP25K(polh)). In contrast, no significant changes were observed in the levels of E25 among wt-, ΔFP25K-, and FP25K(polh)-infected cells. The changes observed in the levels of E66 among the different viral mutants were not accompanied by changes in either the time of synthesis, membrane association, protein turnover, or steady-state transcript abundance. Deletion of FP25K also substantially altered the transport and localization of E66 during infection. In cells infected with the ΔFP25K mutant virus, E66 accumulated in localized regions at the nuclear periphery and the outer nuclear membrane and did not traffic to intranuclear membranes. In contrast, in cells infected with the FP25K(polh) mutant virus E66 trafficked to intranuclear membranes. For comparison, E25 was normally transported to intranuclear membranes in both ΔFP25K- and FP25K(polh)-infected cells. Altogether these studies suggest that FP25K affects the synthesis of E66 at a posttranscriptional level, probably by altering the translation of E66; additionally, the block in transport of E66 at the nuclear envelope in ΔFP25K-infected cells suggests that the pathway of E66 trafficking to the inner nuclear membrane and intranuclear microvesicles is specifically regulated and must be influenced by factors that do not control the traffic of E25

    Multiple drugs compete for transport via the Plasmodium falciparum chloroquine resistance transporter at distinct but interdependent sites

    Get PDF
    Mutations in the "chloroquine resistance transporter" (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates. Here we show that mutant PfCRT also transports quinine, quinidine, and verapamil, indicating that the protein behaves as a multidrug resistance carrier. Detailed kinetic analyses revealed that chloroquine and quinine compete for transport via PfCRT in a manner that is consistent with mixed-type inhibition. Moreover, our analyses suggest that PfCRT accepts chloroquine and quinine at distinct but antagonistically interacting sites. We also found verapamil to be a partial mixed-type inhibitor of chloroquine transport via PfCRT, further supporting the idea that PfCRT possesses multiple substratebinding sites. Our findings provide new mechanistic insights into the workings of PfCRT, which could be exploited to design potent inhibitors of this key mediator of drug resistance

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam
    • …
    corecore