16,754 research outputs found

    Extracting (n,g) direct capture cross sections from Coulomb dissociation: application to 14^{14}C(n,γ\gamma)15^{15}C

    Get PDF
    A methodology for extracting neutron direct capture rates from Coulomb dissociation data is developed and applied to the Coulomb dissociation of 15C on 208Pb at 68 MeV/nucleon. Full Continuum Discretized Coupled Channel calculations are performed and an asymptotic normalization coefficient is determined from a fit to the breakup data. Direct neutron capture calculations using the extracted asymptotic normalization coefficient provide (n,γ)(n,\gamma) cross sections consistent with direct measurements. Our results show that the Coulomb Dissociation data can be reliably used for extracting the cross section for 14C(n,g)15C if the appropriate reaction theory is used. The resulting error bars are of comparable magnitude to those from the direct measurement. This procedure can be used more generally to extract capture cross sections from breakup reactions whenever the desired capture process is fully peripheral.Comment: submitted to Phys. Rev. C (R

    Theoretical and material studies on thin-film electroluminescent devices

    Get PDF
    A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed

    Integrated exhaust gas analysis system for aircraft turbine engine component testing

    Get PDF
    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks

    An integrated exhaust gas analysis system with self-contained data processing and automatic calibration

    Get PDF
    An integrated gas analysis system designed to operate in automatic, semiautomatic, and manual modes from a remote control panel is described. The system measures the carbon monoxide, oxygen, water vapor, total hydrocarbons, carbon dioxide, and oxides of nitrogen. A pull through design provides increased reliability and eliminates the need for manual flow rate adjustment and pressure correction. The system contains two microprocessors to range the analyzers, calibrate the system, process the raw data to units of concentration, and provides information to the facility research computer and to the operator through terminal and the control panels. After initial setup, the system operates for several hours without significant operator attention

    Theoretical and material studies on thin-film electroluminescent devices

    Get PDF
    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as accessed by x ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces
    corecore