3 research outputs found

    Effect of argon concentration on thermal efficiency of gas-filled insulating glass flat-plate collectors

    Get PDF
    open access articleInsulating glass flat-plate collectors can save cost by being produced quickly and automatically in insulated glass production facilities, and they can be filled with argon to reduce heat loss. During its lifetime, the collector is likely to lose argon because of gradual material degradation of the sealing. However, information on the influence of the argon concentration on the collector efficiency is limited. Therefore, the objective of this research work was to analyse this effect. A theoretical material property calculation of argon-air mixtures was carried out to determine the convective losses with variable argon concentrations. Thermal collector performance was measured experimentally using an outdoor solar tracker test rig. The results strongly suggest, that the influence of argon concentration on both the convective losses and the thermal efficiency is non-linear. The measurements revealed that an argon concentration of 90 % can increase average thermal performance by percentage points. An increase in argon concentration from 0 % to 50 % has almost twice the effect on average thermal efficiency as an increase from 50 % to 90 %. Concluding from these results, an argon leakage threshold of 2.5 percentage points per year is proposed to avoid disproportionate loss of efficiency over time

    NACA 2412 performance modification via using AFC

    No full text
    The NACA 2412 profile was numerically studied via employing 2D-DNS and implementing Active Flow Control (AFC), the Reynolds number considered was 6757, being the angle of attack of 8º. Initially, the basic flow without implementing AFC was considered, the point in which the boundary layer separates as well as the y+ value along the profile length were evaluated. A single groove location, just before the separation point, was considered, periodic forcing was employed to both modify the location of the separation point and change the separation area where vortices are present. This was undertaken resulting in a reduction of the drag coefficient while increasing the lift. Via studying a set of frequencies and amplitudes linked with the AFC periodic actuation, it was obtained the optimum set of parameters to minimize the drag while maximizing the lift.Postprint (published version

    NACA 2412 performance modification via using AFC

    No full text
    The NACA 2412 profile was numerically studied via employing 2D-DNS and implementing Active Flow Control (AFC), the Reynolds number considered was 6757, being the angle of attack of 8º. Initially, the basic flow without implementing AFC was considered, the point in which the boundary layer separates as well as the y+ value along the profile length were evaluated. A single groove location, just before the separation point, was considered, periodic forcing was employed to both modify the location of the separation point and change the separation area where vortices are present. This was undertaken resulting in a reduction of the drag coefficient while increasing the lift. Via studying a set of frequencies and amplitudes linked with the AFC periodic actuation, it was obtained the optimum set of parameters to minimize the drag while maximizing the lift
    corecore