88 research outputs found

    Genetic and biological characterization of feline foamy virus isolated from a leopard cat (Prionailurus bengalensis) in Vietnam

    Get PDF
    Foamy viruses have been isolated from various mammals and show long-term co-speciation with their hosts. However, the frequent inter-species transmission of feline foamy viruses (FFVs) from domestic cats to wild cats across genera has been reported. Because infectious molecular clones of FFVs derived from wild cats have not been available, whether there are specific characteristics enabling FFVs to adapt to the new host species is still unknown. Here, we obtained the complete genome sequences of two FFV isolates (strains NV138 and SV201) from leopard cats (Prionailurus bengalensis) in Vietnam and constructed an infectious molecular clone, named pLC960, from strain NV138. The growth kinetics of the virus derived from pLC960 were comparable to those of other FFVs derived from domestic cats. Phylogenetic analysis revealed that these two FFVs from leopard cats are clustered in the same clade as FFVs from domestic cats in Vietnam. Comparisons of the amino acid sequences of Env and Bet proteins showed more than 97% identity among samples and no specific amino acid substitutions between FFVs from domestic cats and ones from leopard cats. These results indicate the absence of genetic constraint of FFVs for interspecies transmission from domestic cats to leopard cats

    Test of Various Photocathodes

    Get PDF
    A test of various photocathodes was carried out. The tested materials were CsI, CsTe, their multi-layers and so on. The quantum efficiencies of the various materials were measured under a vacuum and/or after exposure to several kinds of gases.Comment: 7 pages, Latex format(article), figures included, published in NIM A343(1994)11

    Absence of a classical long-range order in S=1/2S=1/2 Heisenberg antiferromagnet on triangular lattice

    Full text link
    We study the quantum phase transition of an S=1/2S=1/2 anisotropic α\alpha (Jz/Jxy)(\equiv J_z/J_{xy}) Heisenberg antiferromagnet on a triangular lattice. We calculate the sublattice magnetization and the long-range helical order-parameter and their Binder ratios on finite systems with N36N \leq 36 sites. The NN dependence of the Binder ratios reveals that the classical 120^{\circ} N\'{e}el state occurs for α0.55\alpha \lesssim 0.55, whereas a critical collinear state occurs for 1/α0.61/\alpha \lesssim 0.6. This result is at odds with a widely-held belief that the ground state of a Heisenberg antiferromagnet is the 120^{\circ} N\'{e}el state, but it also provides a possible mechanism explaining experimentally observed spin liquids.Comment: 4 pages, 7 figure

    Hydrophobic silica aerogel production at KEK

    Full text link
    We present herein a characterization of a standard method used at the High Energy Accelerator Research Organization (KEK) to produce hydrophobic silica aerogels and expand this method to obtain a wide range of refractive index (n = 1.006-1.14). We describe in detail the entire production process and explain the methods used to measure the characteristic parameters of aerogels, namely the refractive index, transmittance, and density. We use a small-angle X-ray scattering (SAXS) technique to relate the transparency to the fine structure of aerogels.Comment: To be published in Nucl. Instr. and Meth. A, 9 pages, 10 figures, 1 tabl

    CCL2 as a potential therapeutic target for clear cell renal cell carcinoma

    Get PDF
    We previously reported that the pVHL-atypical PKC-JunB pathway contributed to promotion of cell invasiveness and angiogenesis in clear cell renal cell carcinoma (ccRCC), and we detected chemokine (C-C motif) ligand-2 (CCL2) as one of downstream effectors of JunB. CCL2 plays a critical role in tumorigenesis in other types of cancer, but its role in ccRCC remains unclear. In this study, we investigated the roles and therapeutic potential of CCL2 in ccRCC. Immunohistochemical analysis of CCL2 expression for ccRCC specimens showed that upregulation of CCL2 expression correlated with clinical stage, overall survival, and macrophage infiltration. For functional analysis of CCL2 in ccRCC cells, we generated subclones of WT8 cells that overexpressed CCL2 and subclones 786-O cells in which CCL2 expression was knocked down. Although CCL2 expression did not affect cell proliferation in vitro, CCL2 overexpression enhanced and CCL2 knockdown suppressed tumor growth, angiogenesis, and macrophage infiltration in vivo. We then depleted macrophages from tumor xenografts by administration of clodronate liposomes to confirm the role of macrophages in ccRCC. Depletion of macrophages suppressed tumor growth and angiogenesis. To examine the effect of inhibiting CCL2 activity in ccRCC, we administered CCL2 neutralizing antibody to primary RCC xenografts established from patient surgical specimens. Inhibition of CCL2 activity resulted in significant suppression of tumor growth, angiogenesis, and macrophage infiltration. These results suggest that CCL2 is involved in angiogenesis and macrophage infiltration in ccRCC, and that CCL2 could be a potential therapeutic target for ccRCC

    Establishment and characterization of a novel treatment‐related neuroendocrine prostate cancer cell line KUCaP13

    Get PDF
    The prevalence of neuroendocrine prostate cancer (NEPC) arising from adenocarcinoma (AC) upon potent androgen receptor (AR) pathway inhibition is increasing. Deeper understanding of NEPC biology and development of novel therapeutic agents are needed. However, research is hindered by the paucity of research models, especially cell lines developed from NEPC patients. We established a novel NEPC cell line, KUCaP13, from tissue of a patient initially diagnosed with AC which later recurred as NEPC. The cell line has been maintained permanently in vitro under regular cell culture conditions and is amenable to gene engineering with lentivirus. KUCaP13 cells lack the expression of AR and overexpress NEPC-associated genes, including SOX2, EZH2, AURKA, PEG10, POU3F2, ENO2, and FOXA2. Importantly, the cell line maintains the homozygous deletion of CHD1, which was confirmed in the primary AC of the index patient. Loss of heterozygosity of TP53 and PTEN, and an allelic loss of RB1 with a transcriptomic signature compatible with Rb pathway aberration were revealed. Knockdown of PEG10 using shRNA significantly suppressed growth in vivo. Introduction of luciferase allowed serial monitoring of cells implanted orthotopically or in the renal subcapsule. Although H3K27me was reduced by EZH2 inhibition, reversion to AC was not observed. KUCaP13 is the first patient-derived, treatment-related NEPC cell line with triple loss of tumor suppressors critical for NEPC development through lineage plasticity. It could be valuable in research to deepen the understanding of NEPC
    corecore