18 research outputs found

    Natural Treatment Systems as Sustainable Ecotechnologies for the Developing Countries

    Get PDF
    The purpose of natural treatment systems is the re-establishment of disturbed ecosystems and their sustainability for benefits to human and nature. The working of natural treatment systems on ecological principles and their sustainability in terms of low cost, low energy consumption, and low mechanical technology is highly desirable. The current review presents pros and cons of the natural treatment systems, their performance, and recent developments to use them in the treatment of various types of wastewaters. Fast population growth and economic pressure in some developing countries compel the implementation of principles of natural treatment to protect natural environment. The employment of these principles for waste treatment not only helps in environmental cleanup but also conserves biological communities. The systems particularly suit developing countries of the world. We reviewed information on constructed wetlands, vermicomposting, role of mangroves, land treatment systems, soil-aquifer treatment, and finally aquatic systems for waste treatment. Economic cost and energy requirements to operate various kinds of natural treatment systems were also reviewed

    TRANSFORMING YOUTH CULTURAL TRENDS IN RESPONSE TO WESTERN INFLUENCES: AN OCCIDENTAL OUTLOOK AND ALTERNATIVE THEORIES

    No full text
    This review explores the dynamics of transforming youth cultural trends in response to Western influences, focusing on an Occidental perspective and alternative theories. As globalization intensifies, Western culture exerts a profound impact on the cultural fabric of youth worldwide. The examination begins by delving into the Occidental outlook, shedding light on how Western cultural elements infiltrate and reshape the values, norms, and behaviors of young individuals. The analysis encompasses diverse facets, including lifestyle choices, fashion trends, and social behaviors, illustrating the intricate interplay between globalization and cultural transformation. Additionally, the review critically assesses alternative theories that challenge or complement the Occidental perspective. Alternative frameworks consider the agency of youth in adopting and adapting Western cultural elements, exploring how local contexts mediate the assimilation process. Furthermore, the review investigates the potential resistance, reinterpretation, or synthesis of Western influences within youth cultures, contributing to a nuanced understanding of cultural dynamics. Ultimately, this review aims to provide a comprehensive insight into the multifaceted nature of cultural transformations among youth, considering both Occidental perspectives and alternative theories in the evolving global landscape

    Relationship of Selected Soil Properties with the Micronutrients in Salt-Affected Soils

    No full text
    The present study aimed to assess the relationship of soil properties in salt-affected soils. The soil samples were collected from 14 districts of Pakistan. Soil salinity and sodicity are the common features of the arid and semiarid regions. The effects of the salt’s interactions with soil micronutrients have not been well studied. Therefore, saline and non-saline soil samples were collected from different locations. The microelements (Fe, Cu, Mn, and Zn) were fractionated into water-soluble, exchangeable, carbonate, Fe + Mn oxide, organic, and residual fractions. Univariate and multivariate analysis (PCA) was carried out to determine the linear relationship between soil properties and micronutrients fractions. Results showed that the magnitude of micronutrients appeared to be affected by the salinity in soils. In saline soil, the Fe fractions differed in the order of residual > organic bound > Fe + Mn bound > carbonate bound > exchangeable > water soluble. Iron fractions varied in the non-saline soils as residual > Fe + Mn bound > organic bound > exchangeable > carbonate bound > water soluble. Copper concentration was higher in the residual and carbonate forms, and the amount was lower in the exchangeable and water-soluble forms under both saline and non-saline conditions. The water-soluble Mn fraction was lower, and the residual Mn fraction was proportionately higher than other forms of Mn in soils. Zinc was found mostly in the residual fraction in both saline and non-saline soils. The mobility factor of micronutrients in non-saline soil was greater than in saline soil. PCA revealed that organic matter (OM) and pH directly affected the fractionation of Cu, Mn, Zn, and Fe in soil. Thus, it could be inferred that salts can bring changes to the composition of micronutrients depending on the nature of the soil and the magnitude of salts

    Lead Extraction Methods in Roadside Soils and Its Relationship with Soil Properties

    Get PDF
    Lead (Pb) is an environmental pollutant, and its concentration in the soil environment has received greater attention. Studies on the interrelation of Pb and major soil properties using different extraction methods have been poorly documented. The lead extraction method is important to be identified, which may accurately reflect Pb extractability from soils. Therefore, a study was conducted to investigate the Pb pollution of roadside soils. Four extractants: ammonium acetate (NH4OAc), hydrochloric acid (HCl), diethylenetriaminepentaacetic acid (DTPA), and sodium hydroxide (NaOH). Soil samples were sieved for three particle sizes: finer to coarser particles (0.5 to 2 mm). Results showed that there were substantial differences for Pb concentrations among sampling sites depending on the extracting reagents: HCl > DTPA > NH4OAc > NaOH. The extractability of Pb from soil was apparently enhanced with the increasing strength of a reagent used for the soil solution. The NH4OAc extractable Pb concentrations in the surface soil samples from the Abbottabad area ranged from 67.9 to 246.7 mg kg−1, and in Haripur, the Pb concentrations ranged from 97.6 to 242.5 mg kg−1. At 20% HCl solution, the average Pb concentrations were 2.6 times higher than the NH4OAc solution in the topsoil of Abbottabad area. The roadside soils contained Pb concentrations higher than the permissible limits. The control soil samples (from a distance of 200 m) exhibited Pb concentrations in the relative range of 28.5 to 61.7 mg kg−1. Pb concentrations in the topsoil and subsoil were found to be apparently inconsistent. The concentration of Pb was higher in the soil containing a higher amount of organic matter and clay content. The soil pH and particle size were inversely related to extractable Pb in the soil. Higher Pb pollution in the soil could be associated with the higher traffic density

    Phylogenetic analysis of strain S<sub>13</sub>.

    No full text
    <p>The evolutionary history was inferred by using the Tamura-Nei model Maximum Composite Likelihood (MCL) approach and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA7.</p
    corecore