14 research outputs found

    Immunoblots of termite extract with anti-cockroach allergen antibodies.

    No full text
    <p>(A) GCr (left lane of each panel) and Cf termite extract (right lane of each panel) (1 μg) were resolved by SDS-PAGE and stained to visualize protein or transferred to PVDF and probed with rabbit anti-cockroach allergen antibodies (1:500) followed by IRdye 800 labeled anti-rabbit secondary antibody (1:10000). Molecular weight markers are shown to the left of the SDS-PAGE gel. (B) The GCr (left lane of each panel) and Cf extracts (right lane of each panel) were probed with a monoclonal anti-Bla g 1 antibody and an IRdye800 labeled goat anti-mouse secondary antibody. Molecular weight markers are shown to the left of the PVDF membrane. (C) Western blots of Cf termite whole body extract. Purified scFvs were used as primary antibodies (1.0 μg/mL) and horseradish peroxidase-conjugated anti-hemagglutinin (1:1000) was used for detection using a chemiluminescent substrate.</p

    Genetic Analysis Using an Isogenic Mating Pair of <i>Aspergillus fumigatus</i> Identifies Azole Resistance Genes and Lack of <i>MAT</i> Locus’s Role in Virulence

    No full text
    <div><p>Invasive aspergillosis (IA) due to <i>Aspergillus fumigatus</i> is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of <i>A</i>. <i>fumigatus</i> opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of <i>A</i>. <i>fumigatus</i> strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (<i>MAT1-1</i>) with a highly fertile (<i>MAT1-2</i>) progeny. Genome sequencing showed that the F<sub>9</sub><i>MAT1-2</i> progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in <i>A</i>. <i>fumigatus</i> was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional <i>in vitro</i> drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in <i>erg11A</i> (<i>cyp51A</i>), as well as multi-drug transporters, <i>erg25</i>, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in <i>A</i>. <i>fumigatus</i> or other heterothallic pathogens, especially for virulence associated traits.</p></div

    Termite proteins cross-react with anti-cockroach allergen antibodies.

    No full text
    <p>Cf termite extract (1 μg) or German cockroach extract (GCr, 1 μg) was added to the wells of a microtiter plate for ELISA and probed with rabbit anti-cockroach allergen antibodies (1:500) followed by IRdye 800 labeled anti-rabbit antibody (1:10000). Black bars represent GCr extract and white bars represent Cf termite extract signals. Samples were tested 4 times and mean values are shown with standard deviation included as error bars. Relative IRdye800 signal is shown on the y-axis and anti-cockroach allergen antibody designation is shown on the x-axis.</p

    Termite proteins cross-react with anti-cockroach allergen scFvs in ELISA assays.

    No full text
    <p>(A) This assay was performed in sandwich format using two separate collections of detection agents. Serially diluted Cf termite extract was first added to a mixture of anti-cockroach scFvs either generated non-specifically using whole body GCr extract or specifically targeted against recombinant Bla g 1, 2, or 4, and one scFv from a naïve human library screened against whole GCr extract that were coupled to unique bead sets as capture agents in 96-well filter bottom plates. A mixture of rabbit anti-E6Cg cockroach extract polyclonal antibodies, anti Bla g 1, anti Bla g 2, and anti Bla g 4 IgGs (1:500) were used as detection antibodies, followed by biotinylated anti-rabbit (1:1000) and streptavidin-RPE (1:500). MFI detected for selected scFvs is on the y-axis. (B) Ninety six well plates were coated with serially diluted Cf termite extract overnight at 4°C. ScFvs (1.0 ug/mL) were added to each well after blocking. The binding was determined after addition of HRP-conjugated anti-HA antibodies. Samples were tested 2 times and mean absorbance values are reported. Serially diluted extract (log scale) is on the x-axis.</p

    Termite proteins cross-react with IgE from human cockroach allergic sera.

    No full text
    <p>(A) Western blot of GCr (left lane of each panel) and Cf termite (right lane of each panel) extracts. The proteins were separated on SDS-PAGE gel followed by transfer onto PVDF membrane. After blocking for 2 hr the blot was incubated with four GCr allergic serum pools S1Cr and P1-4 (1:10). Specific IgE binding was determined following sequential addition of biotinylated goat anti-human IgE (1:1000), and HRP-conjugated streptavidin (1:10,000). (B). 96-well plates were coated with termite extract (100 μg/mL) overnight at 4°C. After blocking for 2 hr, GCr allergic serum pools (1:10) were added to each well. Specific IgE binding was determined following sequential addition of biotinylated goat anti-human IgE (1:1000), HRP-conjugated streptavidin (1:10,000), and TMB substrate. (C) Dose response binding of human IgE in human serum pool (S1Cr) with the indicated amount of Cf termite extract.</p

    Genomic comparison of AFB62F9 and AFB62.

    No full text
    <p>(A) Whole genome coverage plot using AFB62F9 reads mapped to the AFB62 genome showing percent identity (y-axis) per chromosome (x-axis). The red line and dots represents regions of the AFB62 genome covered by AFB62F9 reads at greater than 90% identity. (B) Close-up of mapped reads to the region surrounding the <i>MAT1-2</i> locus in AFB62. Numbers on top are coordinates on contig 677 (coordinates 1495670–1582078 on chromosome III). Top track in dark blue: average coverage of the genome was 48X with a maximum of 56 read coverage. The <i>MAT1-2</i> locus in AFB62F9 had no mapped reads so the coverage drops to 0X (~27 Kb in this figure). Second track: SNP density per 1,000 bp is depicted as a red histogram. Maximum SNP/Kb was 10. Note the sharp increase surrounding the <i>MAT1-1</i> locus and extending in the 3’ direction for an additional ~230Kb not depicted in this figure. Bottom track: annotated protein-coding genes in the AFB62 assembly. Direction of arrows depicts the coding strand.</p

    Total number of SNP of sequenced AFB62 or AFB62F9 intermediate (bold) and high level resistant isolates in itraconazole, posaconazole, or voriconazole after in vitro selection.

    No full text
    <p>Number of mutations in relevant genes <i>erg11A</i>, <i>erg25A</i>, <i>hmg1</i>, <i>ssc70</i>, <i>ganA</i>, and the ABC transporter (AFUA_92.m00226) are presented. Strains in <b>bold</b> were selected under intermediate drug concentrations, strain in <i>italics</i> were direct derivatives of strains in bold selected at high drug concentrations. Numbers in parentheses refer to the number of individual SNPs identified in each gene. Details on the specific mutations are found in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004834#ppat.1004834.s006" target="_blank">S4 Table</a>. Itra—itraconazole, Posa—posaconazole, Vori—voriconazole.</p><p>Total number of SNP of sequenced AFB62 or AFB62F9 intermediate (bold) and high level resistant isolates in itraconazole, posaconazole, or voriconazole after in vitro selection.</p
    corecore