16 research outputs found

    Fifth order evolution equation of gravity-capillary waves

    No full text
    We extend the evolution equation for weak nonlinear gravity–capillary waves by including fifth-order nonlinear terms. Stability properties of a uniform Stokes gravity–capillary wave train is studied using the evolution equation obtained here. The region of stability in the perturbed wave-number plane determined by the fifth-order evolution equation is compared with that determined by third- and fourth-order evolution equations. We find that if the wave number of longitudinal perturbations exceeds a certain critical value, a uniform gravity–capillary wave train becomes unstable. This critical value increases as the wave steepness increases. doi:10.1017/S144618111700027

    Evolution of a pair of random inhomogeneous wave systems over infinite-depth water

    No full text
    A system of two coupled nonlinear spectral transport equations is derived for two obliquely interacting narrowband Gaussian random surface wavetrains, slowly varying in space and time. Using these two equations, stability analysis is performed for two initially homogeneous wave spectra, subject to unidirectional perturbations. We observe that the effect of randomness produces a decrease in the growth rate of instability, but it is higher than the growth for a single wavetrain. The growth rate of instability is observed to decrease with the increase in spectral width. doi:10.1017/S144618111900004

    Current-modified evolution equation for a broader bandwidth capillary-gravity wave packet

    No full text
    We derive a higher order nonlinear evolution equation for a broader bandwidth three-dimensional capillary–gravity wave packet, in the presence of a surface current produced by an internal wave. Instead of a set of coupled equations, a single nonlinear evolution equation is obtained by eliminating the velocity potential for the wave-induced slow motion. Finally, the equation is expressed in an integro-differential equation form, similar to Zakharov’s integral equation. Using the evolution equation derived here, we show that the two sidebands of a surface capillary–gravity wave get excited as a result of resonance with an internal wave, all propagating in the same direction. It is also shown that surface waves can grow exponentially with time at the expense of the energy of the internal wave. doi:10.1017/S144618111600022

    Effect of uniform wind flow on modulational instability of two crossing waves over finite depth water

    No full text
    The effect of uniform wind flow on modulational instability of two crossing waves is studied here. This is an extension of an earlier work to the case of a finite-depth water body. Evolution equations are obtained as a set of three coupled nonlinear equations correct up to third order in wave steepness. Figures presented in this paper display the variation in the growth rate of instability of a pair of obliquely interacting uniform wave trains with respect to the changes in the air-flow velocity, depth of water medium and the angle between the directions of propagation of the two wave packets. We observe that the growth rate of instability increases with the increase in the wind velocity and the depth of water medium. It also increases with the decrease in the angle of interaction of the two wave systems. doi:10.1017/S144618111800017
    corecore