309 research outputs found

    How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission

    Get PDF
    The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms that can be involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce nonexocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions about the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging

    Autoimmunity in Parkinson's Disease: The Role of α-Synuclein-Specific T Cells

    Get PDF
    Evidence from a variety of studies implicates a role for the adaptive immune system in Parkinson's disease (PD). Similar to multiple sclerosis (MS) patients who display a high number of T cells in the brain attacking oligodendrocytes, PD patients show higher numbers of T cells in the ventral midbrain than healthy, age-matched controls. Mouse models of the disease also show the presence of T cells in the brain. The role of these infiltrating T cells in the propagation of disease is controversial; however, recent studies indicate that they may be autoreactive in nature, recognizing disease-altered self-proteins as foreign antigens. T cells of PD patients can generate an autoimmune response to α-synuclein, a protein that is aggregated in PD. α-Synuclein and other proteins are post-translationally modified in an environment in which protein processing is altered, possibly leading to the generation of neo-epitopes, or self-peptides that have not been identified by the host immune system as non-foreign. Infiltrating T cells may also be responding to such modified proteins. Genome-wide association studies (GWAS) have shown associations of PD with haplotypes of major histocompatibility complex (MHC) class II genes, and a polymorphism in a non-coding region that may increase MHC class II in PD patients. We speculate that the inflammation observed in PD may play both pathogenic and protective roles. Future studies on the adaptive immune system in neurodegenerative disorders may elucidate steps in disease pathogenesis and assist with the development of both biomarkers and treatments

    An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures.

    Get PDF
    Postnatally derived cultures of ventral mesencephalic neurons offer several crucial advantages over embryonic ventral mesencephalic cultures, including a higher content of TH-positive cells and the ability to derive cells from the substantia nigra, which contains the neurons most vulnerable to Parkinson's disease. On the other hand, these cultures are more challenging to produce consistently. Here, we provide an easy-to-implement protocol for culturing postnatal ventral mesencephalic cells from the substantia nigra (SN) and the ventral tegmental area using commercially available media, dishes, and general lab equipment, avoiding extensive material and equipment purchases. The protocol can be completed in about 5 h and provides ventral midbrain neuron cultures on cortex glia feeder layers in three weeks' time. The protocol uses an optimized protease digestion, tissue storage in Hibernate A during dissection and purification of neurons on an OptiPrep density gradient

    Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice

    Get PDF
    SummaryDegeneration of dopamine (DA) neurons in Parkinson’s disease (PD) causes hypokinesia, but DA replacement therapy can elicit exaggerated voluntary and involuntary behaviors that have been attributed to enhanced DA receptor sensitivity in striatal projection neurons. Here we reveal that in hemiparkinsonian mice, striatal D1 receptor-expressing medium spiny neurons (MSNs) directly projecting to the substantia nigra reticulata (SNr) lose tonic presynaptic inhibition by GABAB receptors. The absence of presynaptic GABAB response potentiates evoked GABA release from MSN efferents to the SNr and drives motor sensitization. This alternative mechanism of sensitization suggests a synaptic target for PD pharmacotherapy

    Current trends in vena cava reconstructive techniques with major liver resection: a systematic review

    Full text link
    Purpose: Historically, invasion of the inferior vena cava (IVC) represented advanced and often unresectable hepatic disease. With surgical and anesthetic innovations, IVC resection and reconstruction have become feasible in selected patients. This review assesses technical variations in reconstructive techniques and post-operative management. Methods: A comprehensive literature search was performed according to PRISMA. Inclusion criteria were (i) peer-reviewed articles in English; (ii) at least three cases; (iii) hepatic IVC resection and reconstruction (January 2015-March 2020). Primary outcomes were reconstructive technique, anti-thrombotic regimen, post-operative IVC patency, and infection. Secondary outcomes included post-operative complications and malignant disease survival. Results: Fourteen articles were included allowing for investigation of 351 individual patients. Analysis demonstrated significant heterogeneity in surgical reconstructive technique, anti-thrombotic management, and post-operative monitoring of patency. There was increased utilization of ex vivo approaches and decreased use of venovenous bypass compared with previously published reviews. Conclusion: This review of literature published between 2015 and 2020 reveals persistent heterogeneity of hepatic IVC reconstructive techniques and peri-operative management. Increased utilization of ex vivo approaches and decreased use of venovenous bypass point towards improved operative techniques, peri-operative management, and anesthesia. In order to gain evidence for consensus on management, a registry would be beneficial

    Neuronal MHC-I display in T-cell mediated neurodegeneration

    Get PDF
    Parkinson’s disease (PD) and other disorders feature the degeneration of ventral midbrain (VM) catecholamine neurons. Recent data suggest that neuroinflammatory mechanisms contribute to a cascade of events leading to chronic neuronal degeneration

    Cytokine pathway disruption in a mouse model of schizophrenia induced by Munc18-1a overexpression in the brain

    Get PDF
    Background: An accumulating body of evidence points to the significance of neuroinflammation and immunogenetics in schizophrenia, and an imbalance of cytokines in the central nervous system (CNS) has been suggested to be associated with the disorder. Munc18-overexpressing mice (Munc18-OE) have provided a model for the study of the alterations that may underlie the symptoms of subjects with schizophrenia. The aim of the present study was to elucidate the involvement of neuroinflammation and cytokine imbalance in this model. Methods: Cytokines were evaluated in the cortex and the striatum of Munc18-OE and wild-type (WT) mice by enzyme-linked immunosorbent assay (ELISA). Protein levels of specific microglia and macrophage, astrocytic and neuroinflammation markers were quantified by western blot in the cortex and the striatum of Munc18-OE and WT mice. Results: Each cytokine evaluated (Interferon-gamma (IFN-γ), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-2 (IL-2) and CCL2 chemokine) was present at higher levels in the striatum of Munc18-OE mice than WT. Cortical TNF-α and IL-2 levels were significantly lower in Munc18-OE mice than WT mice. The microglia and macrophage marker CD11b was lower in the cortexes of Munc18-OE mice than WT, but no differences were observed in the striatum. Glial Fibrillary Acidic Protein (GFAP) and Nuclear Factor-kappaB (NF-κB)p65 levels were not different between the groups. Interleukin-1beta (IL-1β) and IL-6 levels were beneath detection limits. Conclusions: The disrupted levels of cytokines detected in the brain of Munc18-OE mice was found to be similar to clinical reports and endorses study of this type for analysis of this aspect of the disorder. The lower CD11b expression in the cortex but not in the striatum of the Munc18-OE mice may reflect differences in physiological activity. The cytokine expression pattern observed in Munc18-OE mice is similar to a previously published model of schizophrenia caused by maternal immune activation. Together, these data suggest a possible role for an immune imbalance in this disorder
    • …
    corecore