29,734 research outputs found
Nuclear emulsion measurements of the astronauts' radiation exposures on Skylab missions 2, 3, and 4
On the Skylab missions, Ilford G.5 and K.2 emulsions were flown as part of passive dosimeter packs carried by the astronauts on their wrists. Due to the long mission times, latent image fading and track crowing imposed limitations on a quantitative track and grain count analysis. For Skylab 2, the complete proton energy spectrum was determined within reasonable error limits. A combined mission dose equivalent of 2,490 millirems from protons, tissue stars and neutrons was measured on Skylab 2. A stationary emulsion stack, kept in a film vault drawer on the same mission, displayed a highly structured directional distribution of the fluence of low-energy protons (enders) reflecting the local shield distribution. On the 59 and 84-day mission 3 and 4, G.5 emulsions had to be cut on the microtom to 5-7 microns for microscopic examination. Even so, the short track segments in such thin layers precluded a statistically reliable grain count analysis. However, the K.2 emulsions still allowed accurate proton ender counts without special provisions
Radiation monitoring with nuclear emulsions on project Gemini. 1. Experimental design and evaluation procedures - Partial results on missions 4 and 5
Radiation monitoring with nuclear emulsions and other radiation sensors on Gemini projec
Radiation monitoring with nuclear emulsions on Project Gemini. II. Results on the 14-day mission Gemini VII
Radiation monitoring results of small nuclear emulsion packs worn by astronauts on Gemini VI
Nuclear emulsion measurements of the astronauts radiation exposure on Apollo 7
Nuclear emulsion measurements of astronaut radiation exposure on Apollo 7 fligh
Nuclear emulsion measurements of the astronauts' radiation exposure on the Apollo-Soyuz mission
On the Apollo-Soyuz mission each astronaut carried one passive dosimeter containing nuclear photographic emulsions, plastic foils, TLD chips, and neutron-activation foils for recording radiation exposure. This report is limited to the presentation of data retrieved from nuclear emulsions. Protons, most of them trapped particles encountered in numerous passes through the South Atlantic Anomaly, contributed by far the largest share to the mission dose. Their linear energy transfer (LET) spectrum was established from track and grain counts in a G.5 emulsion which is used for medium and high energies, and from ender counts in a K.2 emulsion which is used for low energies. The total mission fluence of protons was found to be equivalent to a unidirectional beam of 448,500 square centimeters. The broad spectrum was broken down into small LET intervals, which allowed for the computation of absorbed doses and dose equivalents. The totals are 51 millirad and 74 millirem. Counts of disintegration stars in K.2 emulsion are incomplete at present. While a total of 467 stars were identified, counting their prong numbers is still in progress. It was concluded that the Apollo-Soyuz astronauts' radiation exposure as such did not contain anything out of the ordinary that would seem to require special attention
Nuclear emulsion recordings of heavy primaries on Apollo 7 and 8
Nuclear emulsion recordings of heavy primaries on Apollo 7 and
Measurements of the astronauts' radiation exposure with nuclear emulsion on Mercury missions MA-8 and MA-9
Astronaut radiation exposure on Mercury missions MA-8 and MA-9 measured with nuclear emulsio
Coronal sources of the intrastream structure of the solar wind
Short time scale changes in the bulk speed were found not to coincide with X-ray transients near the sub-earth point nor with the number of X-ray bright points within a coronal hole and near the equator. The changes in bulk speed, it is shown, are associated with changes in light areas in a hole which may be associated with the opening or closing of magnetic field lines within the coronal hole. That there is a causal connection between these sudden changes (apperance or disappearance) in light area and sudden changes in the bulk speed of the solar wind is further evidenced by the spatial proximity on the Sun of these changing light regions to the source position of stream lines from Levine's model that connect into the same solar wind streams
Strong convergence rates of probabilistic integrators for ordinary differential equations
Probabilistic integration of a continuous dynamical system is a way of
systematically introducing model error, at scales no larger than errors
introduced by standard numerical discretisation, in order to enable thorough
exploration of possible responses of the system to inputs. It is thus a
potentially useful approach in a number of applications such as forward
uncertainty quantification, inverse problems, and data assimilation. We extend
the convergence analysis of probabilistic integrators for deterministic
ordinary differential equations, as proposed by Conrad et al.\ (\textit{Stat.\
Comput.}, 2017), to establish mean-square convergence in the uniform norm on
discrete- or continuous-time solutions under relaxed regularity assumptions on
the driving vector fields and their induced flows. Specifically, we show that
randomised high-order integrators for globally Lipschitz flows and randomised
Euler integrators for dissipative vector fields with polynomially-bounded local
Lipschitz constants all have the same mean-square convergence rate as their
deterministic counterparts, provided that the variance of the integration noise
is not of higher order than the corresponding deterministic integrator. These
and similar results are proven for probabilistic integrators where the random
perturbations may be state-dependent, non-Gaussian, or non-centred random
variables.Comment: 25 page
- …