15 research outputs found

    Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs

    Get PDF
    BACKGROUND: Classical genetic studies indicate that nicotine dependence is a substantially heritable complex disorder. Genetic vulnerabilities to nicotine dependence largely overlap with genetic vulnerabilities to dependence on other addictive substances. Successful abstinence from nicotine displays substantial heritable components as well. Some of the heritability for the ability to quit smoking appears to overlap with the genetics of nicotine dependence and some does not. We now report genome wide association studies of nicotine dependent individuals who were successful in abstaining from cigarette smoking, nicotine dependent individuals who were not successful in abstaining and ethnically-matched control subjects free from substantial lifetime use of any addictive substance. RESULTS: These data, and their comparison with data that we have previously obtained from comparisons of four other substance dependent vs control samples support two main ideas: 1) Single nucleotide polymorphisms (SNPs) whose allele frequencies distinguish nicotine-dependent from control individuals identify a set of genes that overlaps significantly with the set of genes that contain markers whose allelic frequencies distinguish the four other substance dependent vs control groups (p < 0.018). 2) SNPs whose allelic frequencies distinguish successful vs unsuccessful abstainers cluster in small genomic regions in ways that are highly unlikely to be due to chance (Monte Carlo p < 0.00001). CONCLUSION: These clustered SNPs nominate candidate genes for successful abstinence from smoking that are implicated in interesting functions: cell adhesion, enzymes, transcriptional regulators, neurotransmitters and receptors and regulation of DNA, RNA and proteins. As these observations are replicated, they will provide an increasingly-strong basis for understanding mechanisms of successful abstinence, for identifying individuals more or less likely to succeed in smoking cessation efforts and for tailoring therapies so that genotypes can help match smokers with the treatments that are most likely to benefit them

    A germline mutation in the brca13’utr predicts stage iv breast cancer

    Get PDF
    Background: A germline, variant in the BRCA1 3'UTR (rs8176318) was previously shown to predict breast and ovarian cancer risk in women from high-risk families, as well as increased risk of triple negative breast cancer. Here, we tested the hypothesis that this variant predicts tumor biology, like other 3'UTR mutations in cancer. Methods: The impact of the BRCA1-3'UTR-variant on BRCA1 gene expression, and altered response to external stimuli was tested in vitro using a luciferase reporter assay. Gene expression was further tested in vivo by immunoflourescence staining on breast tumor tissue, comparing triple negative patient samples with the variant (TG or TT) or non-variant (GG) BRCA1 3'UTR. To determine the significance of the variant on clinically relevant endpoints, a comprehensive collection of West-Irish breast cancer patients were tested for the variant. Finally, an association of the variant with breast screening clinical phenotypes was evaluated using a cohort of women from the High Risk Breast Program at the University of Vermont. Results: Luciferase reporters with the BRCA1-3'UTR-variant (T allele) displayed significantly lower gene expression, as well as altered response to external hormonal stimuli, compared to the non-variant 3'UTR (G allele) in breast cancer cell lines. This was confirmed clinically by the finding of reduced BRCA1 gene expression in triple negative samples from patients carrying the homozygous TT variant, compared to non-variant patients. The BRCA1-3'UTR-variant (TG or TT) also associated with a modest increased risk for developing breast cancer in the West-Irish cohort (OR = 1.4, 95% CI 1.1-1.8, p = 0.033). More importantly, patients with the BRCA1-3'UTR-variant had a 4-fold increased risk of presenting with Stage IV disease (p = 0.018, OR = 3.37, 95% CI 1.3-11.0). Supporting that this finding is due to tumor biology, and not difficulty screening, obese women with the BRCA1-3'UTR-variant had significantly less dense breasts (p = 0.0398) in the Vermont cohort. Conclusion: A variant in the 3'UTR of BRCA1 is functional, leading to decreased BRCA1 expression, modest increased breast cancer risk, and most importantly, presentation with stage IV breast cancer, likely due to aggressive tumor biology

    De Novo Damaging DNA Coding Mutations Are Associated With Obsessive-Compulsive Disorder and Overlap With Tourette’s Disorder and Autism

    No full text
    BackgroundObsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with a genetic risk component, yet identification of high-confidence risk genes has been challenging. In recent years, risk gene discovery in other complex psychiatric disorders has been achieved by studying rare de novo (DN) coding variants.MethodsWe performed whole-exome sequencing in 222 OCD parent-child trios (184 trios after quality control), comparing DN variant frequencies with 777 previously sequenced unaffected trios. We estimated the contribution of DN mutations to OCD risk and the number of genes involved. Finally, we looked for gene enrichment in other datasets and canonical pathways.ResultsDN likely gene disrupting and predicted damaging missense variants are enriched in OCD probands (rate ratio, 1.52; p&nbsp;= .0005) and contribute to risk. We identified 2 high-confidence risk genes, each containing 2 DN damaging variants in unrelated probands: CHD8 and SCUBE1. We estimate that 34% of DN damaging variants in OCD contribute to risk and that DN damaging variants in approximately 335 genes contribute to risk in 22% of OCD cases. Furthermore, genes harboring DN damaging variants in OCD are enriched for those reported in neurodevelopmental disorders, particularly Tourette's disorder and autism spectrum disorder. An exploratory network analysis reveals significant functional connectivity and enrichment in canonical pathways, biological processes, and disease networks.ConclusionsOur findings show a pathway toward systematic gene discovery in OCD via identification of DN damaging variants. Sequencing larger cohorts of OCD parent-child trios will reveal more OCD risk genes and will provide needed insights into underlying disease biology
    corecore