12 research outputs found

    A novel approach for preventing esophageal stricture formation: olmesartan prevented apoptosis

    Get PDF
    Accidentally ingested corrosive substances can cause functional and structural damage to the esophageal tissue resulting in stricture formation. It has been reported that the administration of olmesartan (OLM) can have anti-inflammatory, antifibrotic and antiapoptotic effects on injured tissue. The aim of our study was to check if OLM could prevent formation of scars in the corrosive esophageal burn model. Fifty-one Wistar Albino rats were divided into six groups: Control, Sham, OLM, Sham + OLM, Burn, and Burn + OLM. Olmesartan (5 mg/kg) was given by gavage once per day for 21 consecutive days after injury. The morphology of the esophagus was assessed after Masson trichrome staining, and apoptosis was evaluated using the terminal deoxynucleotidyl transferased UTP nick end labeling (TUNEL) method. The serum nucleosomes (as an indicator of apoptosis), serum p53 protein, and esophageal tissue p53 protein levels of each group were measured by immunoassays. Muscularis mucosa damage, submucosal collagen deposition, and tunica muscularis injury in the Burn + OLM group decreased significantly compared with the Burn group (p < 0.05). Similarly, the number of apoptotic cells in the Burn + OLM group decreased compared with the Burn group (p < 0.05). Serum levels of nucleosomes and p53 and tissue of p53 protein did not differ between the groups. Exogenously administered OLM can effectively prevent the occurrence of esophageal strictures caused by corrosive esophageal burns. (Folia Histochemica et Cytobiologica 2014, Vol. 52, No. 1, 29–35

    Desferrioxamine Reduces Oxidative Stress in the Lung Contusion

    Get PDF
    Our hypothesis in this study is that desferrioxamine (DFX) has therapeutic effects on experimental lung contusions in rats. The rats were divided into four groups (n=8): control, control+DFX, contusion, and contusion+DFX. In the control+DFX and contusion+DFX groups, 100 mg/kg DFX was given intraperitoneally once a day just after the contusion and the day after the contusion. Contusions led to a meaningful rise in the malondialdehyde (MDA) level in lung tissue. MDA levels in the contusion+DFX group experienced a significant decline. Glutathione levels were significantly lower in the contusion group than in the control group and significantly higher in the contusion+DFX group. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) levels in the contusion group were significantly lower than those in the control group. In the contusion+DFX group, SOD and GPx levels were significantly higher than those in the contusion group. In light microscopic evaluation, the contusion and contusion+DFX groups showed edema, hemorrhage, alveolar destruction, and leukocyte infiltration. However, histological scoring of the contusion+DFX group was significantly more positive than that of the contusion group. The iNOS staining in the contusion group was significantly more intensive than that in all other groups. DFX reduced iNOS staining significantly in comparison to the contusion group. This study showed that DFX reduced oxidative stress in lung contusions in rats and histopathologically ensured the recovery of the lung tissue

    The effects of N-acetylcysteine on intestinal ischemia/reperfusion injury in rats

    No full text
    Objectives: To evaluate the effects of N-acetylcysteine (NAC) on the injury of intestinal ischemia-reperfusion

    Preventive effects of hyperbaric oxygen treatment on glycerol-induced myoglobinuric acute renal failure in rats

    No full text
    Myoglobinuric acute renal failure (ARF) is a uremic syndrome caused by traumatic or non-traumatic skeletal muscle breakdown and intracellular elements that are released into the bloodstream. We hypothesized that hyperbaric oxygen (HBO) therapy could be beneficial in the treatment of myoglobinuric ARF caused by rhabdomyolysis. A total of 32 rats were used in the study. The rats were divided into four groups: control, control+hyperbaric oxygen (control+HBO), ARF, and ARF+hyperbaric oxygen (ARF+HBO). Glycerol (8 ml/kg) was injected into the hind legs of each of the rats in ARF and ARF+HBO groups. 2.5 atmospheric absolute HBO was applied to the rats in the control+HBO and ARF+HBO groups for 90 min on two consecutive days. Plasma urea, creatinine, sodium, potassium, calcium, aspartate aminotransferase, alanine aminotransferase, lactic dehydrogenase, creatinine kinase and urine creatinine and sodium were examined. Creatinine clearance and fractional sodium excretion could then be calculated. Superoxide dismutase, catalase, glutathione and malondialdehyde (MDA) levels were assessed in renal tissue. Tissue samples were evaluated by Hematoxylin-eosin, PCNA and TUNEL staining histopathologically. MDA levels were found to be significantly decreased whereas SOD and CAT were twofold higher in the ARF+HBO group compared to the ARF group. Renal function tests were ameliorated by HBO therapy. Semiquantitative evaluation of histopathological findings indicated that necrosis and cast formation was decreased by HBO therapy and TUNEL staining showed that apoptosis was inhibited. PCNA staining showed that HBO therapy did not increase regeneration. Ultimately, we conclude that, in accordance with our hypothesis, HBO could be beneficial in the treatment of myoglobinuric ARF

    The Effects of Hyperbaric Oxygen Treatment on Total Antioxidant Capacity and Prolidase Activity after Bile Duct Ligation in Rats

    No full text
    Background: Hyperbaric oxygen (HBO) therapy may improve cholestasis, increase hepatic regeneration, and decrease oxidative stress in liver. In this study, we aimed to investigate the effects of HBO therapy on hepatic oxidative stress parameters, such as total thiol groups (T-SH), protein carbonyl (PCO), and total antioxidant capacity (TAC) as well as the predictive value of the noninvasive biochemical marker, sialic acid (SA), and prolidase activity in bile duct ligation (BDL)-induced oxidative damage and fibrosis in rats. Methods: We divided 32 adult male Sprague Dawley rats into four groups: sham, sham + HBO, BDL, and BDL + HBO; each group contained eight animals. We placed the sham + HBO and BDL + HBO groups in an experimental hyperbaric chamber, in which we administered pure oxygen at 2.5 atmospheres for 90 min on 14 consecutive days. Results: The application of BDL significantly increased PCO levels and prolidase activity, and decreased T-SH and TAC levels. HBO significantly decreased PCO levels and prolidase activity and increased T-SH and TAC levels in the liver tissues. There was no significant difference in sialic acid levels between any groups. Conclusions: These results indicate that HBO therapy has hepatoprotective effects on BDL-induced injury by decreasing PCO and prolidase activity and increasing antioxidant activities. We therefore suggest that HBO therapy may be useful after BDL-induced injury

    The effects of methylene blue on renal scarring due to pyelonephritis in rats

    No full text
    The aim of this study was to evaluate the efficiency of methylene blue (MB) in preventing renal scar formation after the induction of pyelonephritis (PNP) in a rat model with delayed antimicrobial therapy. An inoculum of the K-12 strain of Escherichia coli was injected into both kidneys. Control groups received isotonic saline instead of bacterial solution. Four equal groups were then formed: the PNP group was untreated and the PNP ciprofloxacin (CIP) treated group was treated only with CIP intraperitoneally (i.p.) starting on the third day following bacterial inoculation. In the PNP (MB)-treated group, MB was given i.p., and in the PNP MB + CIP-treated group, MB + CIP were administered i.p.. In the sixth week following bacterial inoculation, all rats were sacrificed, and both kidneys of the rats in all groups were examined biochemically and histopathologically for renal scarring. Renal scar was significant in the groups treated with MB alone or MB + CIP combination compared with untreated or antibiotic only groups. Delayed treatment with antibiotics had no effect on scarring. These results suggest that the addition of MB to the delayed antibiotic therapy might be beneficial in preventing PNP-induced oxidative renal tissue damage

    A novel approach for preventing esophageal stricture formation: olmesartan prevented apoptosis

    No full text
    Accidentally ingested corrosive substances can cause functional and structural damage to the esophageal tissue resulting in stricture formation. It has been reported that the administration of olmesartan (OLM) can have anti-inflammatory, antifibrotic and antiapoptotic effects on injured tissue. The aim of our study was to check if OLM could prevent formation of scars in the corrosive esophageal burn model. Fifty-one Wistar Albino rats were divided into six groups: Control, Sham, OLM, Sham + OLM, Burn, and Burn + OLM. Olmesartan (5 mg/kg) was given by gavage once per day for 21 consecutive days after injury. The morphology of the esophagus was assessed after Masson trichrome staining, and apoptosis was evaluated using the terminal deoxynucleotidyl transferased UTP nick end labeling (TUNEL) method. The serum nucleosomes (as an indicator of apoptosis), serum p53 protein, and esophageal tissue p53 protein levels of each group were measured by immunoassays. Muscularis mucosa damage, submucosal collagen deposition, and tunica muscularis injury in the Burn + OLM group decreased significantly compared with the Burn group (p < 0.05). Similarly, the number of apoptotic cells in the Burn + OLM group decreased compared with the Burn group (p < 0.05). Serum levels of nucleosomes and p53 and tissue of p53 protein did not differ between the groups. Exogenously administered OLM can effectively prevent the occurrence of esophageal strictures caused by corrosive esophageal burns

    A novel approach for preventing esophageal stricture formation: olmesartan prevented apoptosis

    No full text
    Accidentally ingested corrosive substances can cause functional and structural damage to the esophageal tissue resulting in stricture formation. It has been reported that the administration of olmesartan (OLM) can have anti-inflammatory, antifibrotic and antiapoptotic effects on injured tissue. The aim of our study was to check if OLM could prevent formation of scars in the corrosive esophageal burn model. Fifty-one Wistar Albino rats were divided into six groups: Control, Sham, OLM, Sham + OLM, Burn, and Burn + OLM. Olmesartan (5 mg/kg) was given by gavage once per day for 21 consecutive days after injury. The morphology of the esophagus was assessed after Masson trichrome staining, and apoptosis was evaluated using the terminal deoxynucleotidyl transferased UTP nick end labeling (TUNEL) method. The serum nucleosomes (as an indicator of apoptosis), serum p53 protein, and esophageal tissue p53 protein levels of each group were measured by immunoassays. Muscularis mucosa damage, submucosal collagen deposition, and tunica muscularis injury in the Burn + OLM group decreased significantly compared with the Burn group (p < 0.05). Similarly, the number of apoptotic cells in the Burn + OLM group decreased compared with the Burn group (p < 0.05). Serum levels of nucleosomes and p53 and tissue of p53 protein did not differ between the groups. Exogenously administered OLM can effectively prevent the occurrence of esophageal strictures caused by corrosive esophageal burns
    corecore