99 research outputs found

    Cardioprotection of Immature Heart by Simultaneous Activation of PKA and Epac: A Role for the Mitochondrial Permeability Transition Pore

    Get PDF
    Metabolic and ionic changes during ischaemia predispose the heart to the damaging effects of reperfusion. Such changes and the resulting injury differ between immature and adult hearts. Therefore, cardioprotective strategies for adults must be tested in immature hearts. We have recently shown that the simultaneous activation of protein kinase A (PKA) and exchange protein activated by cAMP (Epac) confers marked cardioprotection in adult hearts. The aim of this study is to investigate the efficacy of this intervention in immature hearts and determine whether the mitochondrial permeability transition pore (MPTP) is involved. Isolated perfused Langendorff hearts from both adult and immature rats were exposed to global ischaemia and reperfusion injury (I/R) following control perfusion or perfusion after an equilibration period with activators of PKA and/or Epac. Functional outcome and reperfusion injury were measured and in parallel, mitochondria were isolated following 5 min of reperfusion to determine whether cardioprotective interventions involved changes in MPTP opening behaviour. Perfusion for 5 min preceding ischaemia of injury-matched adult and immature hearts with 5 µM 8-Br (8-Br-cAMP-AM), an activator of both PKA and Epac, led to significant reduction in post-reperfusion CK release and infarct size. Perfusion with this agent also led to a reduction in MPTP opening propensity in both adult and immature hearts. These data show that immature hearts are innately more resistant to I/R injury than adults, and that this is due to a reduced tendency of MPTP opening following reperfusion. Furthermore, simultaneous stimulation of PKA and Epac causes cardioprotection, which is additive to the innate resistance

    Preconditioning or postconditioning with 8-Br-cAMP-AM protects the heart against regional ischemia and reperfusion:a role for mitochondrial permeability transition

    Get PDF
    The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 ÎĽM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism

    Cardiac taurine and principal amino acids in right and left ventricles of patients with either aortic valve stenosis or coronary artery disease:the importance of diabetes and gender

    Get PDF
    Free intracellular taurine and principal α-amino acids (glutamate, glutamine, aspartate, asparagine and alanine) are abundant in human heart. They are cellular regulators and their concentration can change in response to disease and cardiac insults and have been shown to differ between hypertrophic left ventricle (LV) and the relatively “normal” right ventricle (RV) in patients with aortic valve stenosis (AVS). This difference has not been shown for coronary artery disease (CAD) and there are no studies that have simultaneously compared amino acid content in LV and RV from different pathologies. In this study we investigated the effect of disease on taurine and principal amino acids in both LV and RV, measured in myocardial biopsies collected from patients with either AVS (n = 22) or CAD (n = 36). Amino acids were extracted and measured using HPLC. Intra- and inter-group analysis was performed as well as subgroup analysis focusing on gender in AVS and type 2 diabetes in CAD. LV of both groups has significantly higher levels of taurine compared to RV. This difference disappears in both diabetic CAD patients and in male AVS patients. Alanine was the only α-amino acid to be altered by diabetes. LV of female AVS patients had significantly more glutamate, aspartate and asparagine than corresponding RV, whilst no difference was seen between LV and RV in males. LV of females has higher glutamate and glutamine and less metabolic stress than LV of males. This work shows that in contrast to LV, RV responds differently to disease which can be modulated by gender and diabetes

    Cardiac Phosphoproteomics during Remote Ischemic Preconditioning: A Role for the Sarcomeric Z-Disk Proteins

    Get PDF
    Remote ischemic preconditioning (RIPC) induced by brief ischemia/reperfusion cycles of remote organ (e.g., limb) is cardioprotective. The myocardial cellular changes during RIPC responsible for this phenomenon are not currently known. The aim of this work was to identify the activation by phosphorylation of cardiac proteins following RIPC. To achieve our aim we used isobaric tandem mass tagging (TMT) and reverse phase nanoliquid chromatography tandem spectrometry using a Linear Trap Quadropole (LTQ) Orbitrap Velos mass spectrometer. Male C57/Bl6 mice were anesthetized by an intraperitoneal injection of Tribromoethanol. A cuff was placed around the hind limb and inflated at 200 mmHg to prevent blood flow as confirmed by Laser Doppler Flowmetry. RIPC was induced by 4 cycles of 5 min of limb ischemia followed by 5 min of reperfusion. Hearts were extracted for phosphoproteomics. We identified approximately 30 phosphoproteins that were differentially expressed in response to RIPC protocol. The levels of several phosphoproteins in the Z-disk of the sarcomere including phospho-myozenin-2 were significantly higher than control. This study describes and validates a novel approach to monitor the changes in the cardiac phosphoproteome following the cardioprotective intervention of RIPC and prior to index ischemia. The increased level of phosphorylated sarcomeric proteins suggests they may have a role in cardiac signaling during RIPC

    Pulmonary injury after cardiopulmonary bypass: Beneficial effects of low-frequency mechanical ventilation

    Get PDF
    ObjectivePulmonary dysfunction is a frequent postoperative complication after cardiac surgery with cardiopulmonary bypass, and atelectasis is thought to be one of the main causes. The aim of this study was to evaluate whether low-frequency ventilation and continuous positive airway pressure during cardiopulmonary bypass reduce postcardiopulmonary bypass lung injury.MethodsEighteen Yorkshire pigs were subjected to 120 minutes of cardiopulmonary bypass (1 hour of cardioplegic arrest) followed by 90 minutes of recovery before being sacrificed. Six animals served as control with the endotracheal tube open to atmosphere during cardiopulmonary bypass. The remaining animals were divided into 2 groups of 6: One group received continuous positive airway pressure of 5 cm H2O, and one group received low-frequency ventilation (5/minutes) during cardiopulmonary bypass. Lung tissue biopsy and bronchoalveolar lavage samples were obtained before and 90 minutes after discontinuation of cardiopulmonary bypass for measurement of adenine nucleotide (adenosine-5′-triphosphate, adenosine diphosphate, adenosine monophosphate), lactate dehydrogenase, DNA levels, and histology. Hemodynamic data and arterial blood gases were also collected through the study.ResultsThe hemodynamic parameters were similar in the 3 groups. After cardiopulmonary bypass, the low-frequency ventilation group showed significantly better oxygen tension and alveolar arterial oxygen gradient, higher adenine nucleotide, lower lactate dehydrogenase levels, and reduced histologic damage in lung biopsy, as well as lower DNA levels in bronchoalveolar lavage compared with the control group. The continuous positive airway pressure group showed only significantly reduced lactate dehydrogenase levels compared with control.ConclusionLow-frequency ventilation during cardiopulmonary bypass in a pig experimental model reduces tissue metabolic and histologic damage in the lungs and is associated with improved postoperative gas exchange

    Determination of Agrin and Related Proteins Levels as a Function of Age in Human Hearts

    Get PDF
    BACKGROUND: Mature cardiomyocytes are unable to proliferate, preventing the injured adult heart from repairing itself. Studies in rodents have suggested that the extracellular matrix protein agrin promotes cardiomyocyte proliferation in the developing heart and that agrin expression is downregulated shortly after birth, resulting in the cessation of proliferation. Agrin based therapies have proven successful at inducing repair in animal models of cardiac injury, however whether similar pathways exist in the human heart is unknown. METHODS: Right ventricular (RV) biopsies were collected from 40 patients undergoing surgery for congenital heart disease and the expression of agrin and associated proteins was investigated. RESULTS: Agrin transcripts were found in all samples and their levels were significantly negatively correlated to age (p = 0.026), as were laminin transcripts (p = 0.023), whereas no such correlation was found for the other proteins analyzed. No significant correlations for any of the proteins were found when grouping patients by their gender or pathology. Immunohistochemistry and western blots to detect and localize agrin and the other proteins under analysis in RV tissue, confirmed their presence in patients of all ages. CONCLUSIONS: We show that agrin is progressively downregulated with age in human RV tissue but not as dramatically as has been demonstrated in mice; highlighting both similarities and differences to findings in rodents. Our results lay the groundwork for future studies exploring the potential of agrin-based therapies in the repair of damaged human hearts

    Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury:A Focus on Necroptosis

    Get PDF
    Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)–dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease
    • …
    corecore