24 research outputs found

    rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation.

    No full text
    The signal transduction pathway leading to the activation of the transcription factor NF-kappaB remains incompletely characterized. We demonstrate that in HeLa cells, transient expression of a constitutively active mutant of the small GTP-binding protein rac1 (V12rac1) leads to a significant increase in NF-kappaB transcriptional activity. In addition, expression of a dominant-negative rac1 mutant (N17rac1) inhibits basal and interleukin 1beta-stimulated NF-kappaB activity. Gel shift analysis using nuclear extract prepared from HeLa cells infected with a recombinant adenovirus encoding N17rac1 (Ad.N17racl) showed reduced levels of cytokine-stimulated DNA binding to a consensus NF-kappaB binding site. We demonstrate that rac proteins function downstream of ras proteins in the activation of NF-kappaB. In addition, V12rac1 stimulation of NF-kappaB activity is shown to be independent of the ability of rac proteins to activate the family of c-jun amino-terminal kinases. In an effort to further explore how rac proteins might regulate NF-kappaB activity, we demonstrate that expression of V12rac1 in HeLa cells or stimulation with cytokine results in a significant increase in intracellular reactive oxygen species (ROS). Treatment of cells with either of two chemically unrelated antioxidants inhibits the rise in ROS that occurs following V12rac1 expression as well as the ability of V12rac1 to stimulate NF-kappaB activity. These results suggest that in HeLa cells, rac1 regulates intracellular ROS production and that rac proteins function as part of a redox-dependent signal transduction pathway leading to NF-kappaB activation

    Regulation of reactive-oxygen-species generation in fibroblasts by Rac1.

    No full text
    In a variety of non-phagocytic cell types, there is a marked increase in intracellular levels of reactive oxygen species (ROS), including superoxide and H2O2, after ligand stimulation. We demonstrate that in NIH 3T3 cells transient expression of constitutively activated forms of the small GTP-binding proteins Ras or Rac1 leads to a significant increase in intracellular ROS. An increase in intracellular ROS is also demonstrated after growth factor [platelet-derived growth factor (PDGF) or epidermal growth factor (EGF)] or cytokine [tumour necrosis factor-alpha (TNF-alpha) or interleukin (IL)-1 beta] stimulation of NIH 3T3 cells. Expression of a dominant negative allele of Rac1 inhibits the rise in ROS seen after Ras expression or after stimulation by either growth factors or cytokines. These results provide the first demonstration of the pathway by which ligand stimulation of ROS occurs in non-phagocytic cells and suggest that the family of Ras-related small GTP-binding proteins may function as regulators of the intracellular redox state
    corecore