44 research outputs found

    Bacteriophage Administration Reduces the Concentration of Listeria monocytogenes in the Gastrointestinal Tract and Its Translocation to Spleen and Liver in Experimentally Infected Mice

    Get PDF
    To investigate the efficacy of phage supplementation in reducing pathogen numbers, mice were treated via oral gavage with a Listeria monocytogenes phage preparation (designated ListShield) before being orally infected with L. monocytogenes. The concentrations of L. monocytogenes in the liver, spleen, and intestines were significantly lower (P < .05) in the phage-treated than in the control mice. Phage and antibiotic treatments were similarly effective in reducing the levels of L. monocytogenes in the internal organs of the infected mice. However, the significant weight loss detected in the control and antibiotic-treated groups was not observed in the infected, ListShield-treated mice. Long-term (90 days), biweekly treatment of uninfected mice with ListShield did not elicit detectable changes in the microbiota of their large intestines or deleterious changes in their health. Our data support the potential feasibility of using bacteriophages to control proliferation of L. monocytogenes in mice without affecting commensal microbiota composition

    Characterization of pPCP1 Plasmids in Yersinia pestis Strains Isolated from the Former Soviet Union

    Get PDF
    Complete sequences of 9.5-kb pPCP1 plasmids in three Yersinia pestis strains from the former Soviet Union (FSU) were determined and compared with those of pPCP1 plasmids in three well-characterized, non-FSU Y. pestis strains (KIM, CO92, and 91001). Two of the FSU plasmids were from strains C2614 and C2944, isolated from plague foci in Russia, and one plasmid was from strain C790 from Kyrgyzstan. Sequence analyses identified four sequence types among the six plasmids. The pPCP1 plasmids in the FSU strains were most genetically related to the pPCP1 plasmid in the KIM strain and least related to the pPCP1 plasmid in Y. pestis 91001. The FSU strains generally had larger pPCP1 plasmid copy numbers compared to strain CO92. Expression of the plasmid's pla gene was significantly (P ≤ .05) higher in strain C2944 than in strain CO92. Given pla's role in Y. pestis virulence, this difference may have important implications for the strain's virulence

    ECOPHAGE: Combating Antimicrobial Resistance Using Bacteriophages for Eco-Sustainable Agriculture and Food Systems

    Get PDF
    The focus of this meeting was to discuss the suitability of using bacteriophages as alternative antimicrobials in the agrifood sector. Following a One Health approach, the workshop explored the possibilities of implementing phage application strategies in the agriculture, animal husbandry, aquaculture, and food production sectors. Therefore, the meeting had gathered phage researchers, representatives of the agrifood industry, and policymakers to debate the advantages and potential shortcomings of using bacteriophages as alternatives to traditional antimicrobials and chemical pesticides. Industry delegates showed the latest objectives and demands from consumers. Representatives of regulatory agencies (European Medicines Agency (EMA) and Spanish Agency of Medicines and Health Products (AEMPS)) presented an update of new regulatory aspects that will impact and support the approval and implementation of phage application strategies across the different sectors

    Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species

    Bacteriophage Applications for Food Production and Processing

    No full text
    Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many&mdash;often beneficial&mdash;bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods
    corecore