5 research outputs found

    Effects of mismatched transmissions on two-mode squeezing and EPR correlations with a slow light medium

    Full text link
    We theoretically discuss the preservation of squeezing and continuous variable entanglement of two mode squeezed light when the two modes are subjected to unequal transmission. One of the modes is transmitted through a slow light medium while the other is sent through an optical fiber of unit transmission. Balanced homodyne detection is used to check the presence of squeezing. It is found that loss of squeezing occurs when the mismatch in the transmission of the two modes is greater than 40% while near ideal squeezing is preserved when the transmissions are equal. We also discuss the effect of this loss on continuous variable entanglement using strong and weak EPR criteria and possible applications for this experimental scheme.Comment: 7 pages, 4 figure

    Ghost Interference with Optical Parametric Amplifier

    Full text link
    The 'Ghost' interference experiment is analyzed when the source of entangled photons is a multimode Optical Parametric Amplifier(OPA) whose weak limit is the two-photon Spontaneous Parametric Downconversion(SPDC) beam. The visibility of the double-slit pattern is calculated, taking the finite coincidence time window of the photon counting detectors into account. It is found that the coincidence window and the bandwidth of light reaching the detectors play a crucial role in the loss of visibility on coincidence detection, not only in the 'Ghost' interference experiment but in all experiments involving coincidence detection. The differences between the loss of visibility with two-mode and multimode OPA sources is also discussed. PACS: 42.65.Yj, 42.50.Dv, 42.65.L

    Linear optical quantum information processing, imaging, and sensing

    No full text
    We investigate linear optical approaches to quantum information processing, clarifying how linear optics and projective measurements can be used to create designer optical nonlinearities at the few photon level. We apply the lessons learned to develop optimized schemes for generating entangled photonic states for quantum imaging, with super-resolution below the Rayleigh limit, and for quantum sensing, with supersensitivity below the shot-noise limit. © OSA
    corecore