4 research outputs found

    Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses

    No full text
    The unique optical and electrical properties of graphene have triggered great interest in its application as a transparent conducting electrode material and significant effort has been invested in achieving high conductivity while maintaining high transparency. Doping of graphene has been a popular route for reducing its sheet resistance, but this has typically come at a significant loss in optical transmittance. We demonstrate doping of few layers graphene (FLG) with bromine as a means of enhancing the conductivity via intercalation without major optical losses. Our results demonstrate the encapsulation of bromine within the FLG, leading to air-stable transparent conducting electrodes with 5-fold improvement of sheet resistance reaching ∼180 Ω/□ at the cost of only 2–3% loss of optical transmittance. The remarkably low trade-off in optical transparency leads to the highest enhancements in the figure of merit reported thus far for FLG. Furthermore, we tune the work function by up to 0.3 eV by tuning the bromine content. These results should help pave the way for further development of graphene as a potential substitute to transparent conducting polymers and metal oxides used in optoelectronics, photovoltaics, and beyond

    Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries

    No full text
    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn<sub>2</sub>(benzimidazolate)<sub>2</sub>(OH)<sub>2</sub> at the air–water interface. The hydroxyl (−OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li–S battery shows that the Zn<sub>2</sub>(benzimidazolate)<sub>2</sub>(OH)<sub>2</sub> coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries

    Surface Restructuring of Hybrid Perovskite Crystals

    No full text
    Hybrid perovskite crystals have emerged as an important class of semiconductors because of their remarkable performance in optoelectronics devices. The interface structure and chemistry of these crystals are key determinants of the device’s performance. Unfortunately, little is known about the intrinsic properties of the surfaces of perovskite materials because extrinsic effects, such as complex microstructures, processing conditions, and hydration under ambient conditions, are thought to cause resistive losses and high leakage current in solar cells. We reveal the intrinsic structural and optoelectronic properties of both pristinely cleaved and aged surfaces of single crystals. We identify surface restructuring on the aged surfaces (visualized on the atomic-scale by scanning tunneling microscopy) that lead to compositional and optical bandgap changes as well as degradation of carrier dynamics, photocurrent, and solar cell device performance. The insights reported herein clarify the key variables involved in the performance of perovskite-based solar cells and fabrication of high-quality surface single crystals, thus paving the way toward their future exploitation in highly efficient solar cells

    Double Charged Surface Layers in Lead Halide Perovskite Crystals

    No full text
    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them
    corecore