56 research outputs found

    Asymptotic Existence of Proportionally Fair Allocations

    Full text link
    Fair division has long been an important problem in the economics literature. In this note, we consider the existence of proportionally fair allocations of indivisible goods, i.e., allocations of indivisible goods in which every agent gets at least her proportionally fair share according to her own utility function. We show that when utilities are additive and utilities for individual goods are drawn independently at random from a distribution, proportionally fair allocations exist with high probability if the number of goods is a multiple of the number of agents or if the number of goods grows asymptotically faster than the number of agents

    Approximate Maximin Shares for Groups of Agents

    Full text link
    We investigate the problem of fairly allocating indivisible goods among interested agents using the concept of maximin share. Procaccia and Wang showed that while an allocation that gives every agent at least her maximin share does not necessarily exist, one that gives every agent at least 2/32/3 of her share always does. In this paper, we consider the more general setting where we allocate the goods to groups of agents. The agents in each group share the same set of goods even though they may have conflicting preferences. For two groups, we characterize the cardinality of the groups for which a constant factor approximation of the maximin share is possible regardless of the number of goods. We also show settings where an approximation is possible or impossible when there are several groups.Comment: To appear in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    When Do Envy-Free Allocations Exist?

    Full text link
    We consider a fair division setting in which mm indivisible items are to be allocated among nn agents, where the agents have additive utilities and the agents' utilities for individual items are independently sampled from a distribution. Previous work has shown that an envy-free allocation is likely to exist when m=Ω(nlogn)m=\Omega(n\log n) but not when m=n+o(n)m=n+o(n), and left open the question of determining where the phase transition from non-existence to existence occurs. We show that, surprisingly, there is in fact no universal point of transition---instead, the transition is governed by the divisibility relation between mm and nn. On the one hand, if mm is divisible by nn, an envy-free allocation exists with high probability as long as m2nm\geq 2n. On the other hand, if mm is not "almost" divisible by nn, an envy-free allocation is unlikely to exist even when m=Θ(nlogn/loglogn)m=\Theta(n\log n/\log\log n).Comment: Appears in the 33rd AAAI Conference on Artificial Intelligence (AAAI), 201

    Computing an Approximately Optimal Agreeable Set of Items

    Full text link
    We study the problem of finding a small subset of items that is \emph{agreeable} to all agents, meaning that all agents value the subset at least as much as its complement. Previous work has shown worst-case bounds, over all instances with a given number of agents and items, on the number of items that may need to be included in such a subset. Our goal in this paper is to efficiently compute an agreeable subset whose size approximates the size of the smallest agreeable subset for a given instance. We consider three well-known models for representing the preferences of the agents: ordinal preferences on single items, the value oracle model, and additive utilities. In each of these models, we establish virtually tight bounds on the approximation ratio that can be obtained by algorithms running in polynomial time.Comment: A preliminary version appeared in Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 201

    Weighted Fair Division with Matroid-Rank Valuations: Monotonicity and Strategyproofness

    Full text link
    We study the problem of fairly allocating indivisible goods to agents with weights corresponding to their entitlements. Previous work has shown that, when agents have binary additive valuations, the maximum weighted Nash welfare rule is resource-, population-, and weight-monotone, satisfies group-strategyproofness, and can be implemented in polynomial time. We generalize these results to the class of weighted additive welfarist rules with concave functions and agents with matroid-rank (also known as binary submodular) valuations.Comment: Appears in the 16th International Symposium on Algorithmic Game Theory (SAGT), 202

    Democratic Fair Allocation of Indivisible Goods

    Full text link
    We study the problem of fairly allocating indivisible goods to groups of agents. Agents in the same group share the same set of goods even though they may have different preferences. Previous work has focused on unanimous fairness, in which all agents in each group must agree that their group's share is fair. Under this strict requirement, fair allocations exist only for small groups. We introduce the concept of democratic fairness, which aims to satisfy a certain fraction of the agents in each group. This concept is better suited to large groups such as cities or countries. We present protocols for democratic fair allocation among two or more arbitrarily large groups of agents with monotonic, additive, or binary valuations. For two groups with arbitrary monotonic valuations, we give an efficient protocol that guarantees envy-freeness up to one good for at least 1/21/2 of the agents in each group, and prove that the 1/21/2 fraction is optimal. We also present other protocols that make weaker fairness guarantees to more agents in each group, or to more groups. Our protocols combine techniques from different fields, including combinatorial game theory, cake cutting, and voting.Comment: Appears in the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence (IJCAI-ECAI), 201
    corecore