4 research outputs found

    Heterozygous Cc2d1a mice show sex-dependent changes in the Beclin-1/p62 ratio with impaired prefrontal cortex and hippocampal autophagy

    Get PDF
    Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders characterized by repetitive behaviors, lack of social interaction and communication. CC2D1A is identified in patients as an autism risk gene. Recently, we suggested that heterozygous Cc2d1a mice exhibit impaired autophagy in the hippocampus. We now report the analysis of autophagy markers (Lc3, Beclin and p62) in different regions hippocampus, prefrontal cortex, hypothalamus and cerebellum, with an overall decrease in autophagy and changes in Beclin-1/p62 ratio in the hippocampus. We observed sex-dependent variations in transcripts and protein expression levels. Moreover, our analyses suggest that alterations in autophagy initiated in Cc2d1a heterozygous parents are variably transmitted to offspring, even when the offspring's genotype is wild type. Aberration in the autophagy mechanism may indirectly contribute to induce synapse alteration in the ASD brain

    Trans Species RNA Activity: Sperm RNA of the Father of an Autistic Child Programs Glial Cells and Behavioral Disorders in Mice

    No full text
    Recently, we described the alteration of six miRNAs in the serum of autistic children, their fathers, mothers, siblings, and in the sperm of autistic mouse models. Studies in model organisms suggest that noncoding RNAs participate in transcriptional modulation pathways. Using mice, approaches to alter the amount of RNA in fertilized eggs enable in vivo intervention at an early stage of development. Noncoding RNAs are very numerous in spermatozoa. Our study addresses a fundamental question: can the transfer of RNA content from sperm to eggs result in changes in phenotypic traits, such as autism? To explore this, we used sperm RNA from a normal father but with autistic children to create mouse models for autism. Here, we induced, in a single step by microinjecting sperm RNA into fertilized mouse eggs, a transcriptional alteration with the transformation in adults of glial cells into cells affected by astrogliosis and microgliosis developing deficiency disorders of the ‘autism-like’ type in mice born following these manipulations. Human sperm RNA alters gene expression in mice, and validates the possibility of non-Mendelian inheritance in autism

    Alterations in Serum miR-126-3p levels over time: a marker of pituitary insufficiency following head trauma

    No full text
    Introduction: Traumatic brain injuries (TBIs) pose a high risk of pituitary insufficiency development in patients. We have previously reported alterations in miR-126-3p levels in sera from patients with TBI-induced pituitary deficiency. Methods: To investigate why TBI-induced pituitary deficiency develops only in some patients and to reveal the relationship between miR-126-3p with hormone axes, we used mice that were epigenetically modified with miR-126-3p at the embryonic stage. These modified mice were subjected to mild TBI (mTBI) according to the Marmarou’s weight-drop model at 2 months of age. The levels of miR-126-3p were assessed at 1 and 30 days in serum after mTBI. Changes in miR-126-3p levels after mTBI of wild-type and miR-126-3p* modified mouse lines validated our human results. Additionally, hypothalamus, pituitary, and adrenal tissues were analyzed for transcripts and associated serum hormone levels. Results: We report that miR-126-3p directly affects hypothalamus-pituitary-adrenal (HPA) axis upregulation and ACTH secretion in the acute phase after mTBI. We also demonstrated that miR-126-3p suppresses Gnrh transcripts in the hypothalamus and pituitary, but this is not reflected in serum FSH/LH levels. The increase in ACTH levels in the acute phase may indicate that upregulation of miR-126-3p at the embryonic stage has a protective effect on the HPA axis after TBI. Notably, the most prominent transcriptional response is found in the adrenals, highlighting their role in the pathophysiology of TBI. Conclusion: Our study revealed the role of miR-126-3p in TBI and pituitary deficiency developing after TBI, and the obtained data will significantly contribute to elucidating the mechanism of pituitary deficiency development after TBI and development of new diagnostic and treatment strategies
    corecore