5 research outputs found

    Improvement of characterization accuracy of the nonlinear photonic crystals using finite elements-iterative method

    Full text link
    We investigate nonlinear one- and two-dimensional photonic crystals by applying a finite element-iterative method.Numerical results show the essential influence of nonlinear elements embedded into a quarter-wave stack and the sharp photonic crystal waveguide bend on the spectral characteristics of these structures. We compare our results with those obtained in [21] from the discrete equation method for the case of a sharp waveguide bend. The comparison shows that neglecting the nonuniform field distribution inside the embedded nonlinear elements leads to overestimation of the waveguide bend transmissivity.Comment: 5 pages, 9 figure

    Group delay investigation of N-order chirping mirrors

    No full text
    We present the numerical calculation of N-order chirping mirrors with chirping both high and low refractive index layers using the transfer matrix method. The group delay and group delay dispersion are investigated for these structures. It is shown that the group delay dispersion is negative and constant at Bragg wavelength for four-order chirping mirrors

    Photonic band-gap maps for different two dimensionally periodic photonic crystal structures

    No full text
    In this paper, the photonic band-gap (PBG) maps of fundamental photonic crystal (PhC) lattices are presented, and discussed. Two fundamental types of lattice: square and hexagonal (triangular, graphite or honeycomb and kagome) with circular, square, and hexagonal hole shapes are considered. Because they show the largest area gap map and because of the relative ease of fabrication of circular holes, it can be asserted that square and triangular lattices of circular holes offer the best choice of two dimensionally periodic photonic crystal (PhC) structure. Graphite and kagome lattices of circular holes in GaAs also show large area gap maps (and the largest gap map is for the second or third higher PBG region). So graphite and kagome lattices are also relevant for exploitation in PhC devices. At the scale required, fabrication process limitations are a significant problem for the realization of hole shapes other than circula
    corecore