6 research outputs found

    Density and temperature controlled fluid extraction in a bacterial biofilm is determined by poly-γ-glutamic acid production

    Get PDF
    Abstract A hallmark of microbial biofilms is the self-production of an extracellular molecular matrix that encases the resident cells. The matrix provides protection from the environment, while spatial heterogeneity of gene expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. In this work, we report on the emergence of a highly active population of bacteria during the early stages of biofilm formation, facilitated by the extraction of fluid from the underlying agar substrate. We trace the origin of this fluid extraction to the production of poly-γ-glutamic acid (PGA). The flagella-dependent activity develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of fluid proliferation is controlled by the presence of extracellular polysaccharides (EPS). We also find that PGA production is positively correlated with higher temperatures, resulting in high-temperature mature biofilm morphologies that are distinct from the rugose colony biofilm architecture typically associated with B. subtilis. Although previous reports have suggested that PGA production does not play a major role in biofilm morphology in the undomesticated isolate NCIB 3610, our results suggest that this strain produces distinct biofilm matrices in response to environmental conditions

    Bifunctionality of a biofilm matrix protein controlled by redox state

    Get PDF
    Significance The biofilm matrix is a critical target in the hunt for novel strategies to destabilize or stabilize biofilms. Knowledge of the processes controlling matrix assembly is therefore an essential prerequisite to exploitation. Here, we highlight that the complexity of the biofilm matrix is even higher than anticipated, with one matrix component making two independent functional contributions to the community. The influence the protein exerts is dependent on the local environmental properties, providing another dimension to consider during analysis. These findings add to the evidence that bacteria can evolve multifunctional uses for the extracellular matrix components.</jats:p

    Novel form of collective movement by soil bacteria

    Get PDF
    Although migrations are essential for soil microorganisms to exploit scarce and heterogeneously distributed resources, bacterial mobility in soil remains poorly studied due to experimental limitations. In this study, time-lapse images collected using live microscopy techniques captured collective and coordinated groups of B. subtilis cells exhibiting “crowd movement”. Groups of B. subtilis cells moved through transparent soil (nafion polymer with particle size resembling sand) toward plant roots and re-arranged dynamically around root tips in the form of elongating and retracting “flocks” resembling collective behaviour usually associated with higher organisms (e.g., bird flocks or fish schools). Genetic analysis reveals B. subtilis flocks are likely driven by the diffusion of extracellular signalling molecules (e.g., chemotaxis, quorum sensing) and may be impacted by the physical obstacles and hydrodynamics encountered in the soil like environment. Our findings advance understanding of bacterial migration through soil matrices and expand known behaviours for coordinated bacterial movement
    corecore