3,913 research outputs found

    On the emergence mechanism of lunar maria

    Get PDF
    Hypothetical emergence mechanism of lunar mari

    Parquet: Regions of areal plastic dislocations (on Venus)

    Get PDF
    The extensive flat elevations of the Northern Hemisphere of Venus are covered with frequently intersecting lines of dislocations, resembling the outline of a giant parquet. In the internal sections of these regions we find grabens and regions of extension, and on the periphery lobe-shaped flow structures. The parquet was formed after the beginning of the formation of the lava plains, but covered by the youngest lava. These structures apparently arose partly because of the dragging of blocks of crust by the asthenospheric flows, and partly in the gravitational sliding of such heated blocks in the partial melting of their base. It is possible that these elevations occupy on Venus the place of the Earth's rift systems

    Spin current in an electron waveguide tunnel-coupled to topological insulator

    Full text link
    We show that electron tunneling from edge states in two-dimensional topological insulator into a parallel electron waveguide leads to the appearance of spin-polarized current in the waveguide. The spin polarization PP can be very close to unity and the electron current passing through the tunnel contact splits in the waveguide into two branches flowing from the contact. The polarization essentially depends on the electron scattering by the contact and the electron-electron interaction in the one-dimensional edge states. The electron-electron interaction is treated within the Luttinger liquid model. The main effect of the interaction stems from the renormalization of the electron velocity, due to which the polarization increases with the interaction strength. Electron scattering by the contact leads to a decrease in PP. A specific effect occurs when the bottom of the subbands in the waveguide crosses the Dirac point of the spectrum of edge states when changing the voltage or chemical potential. This leads to changing the direction of the spin current.Comment: 11 pages, 5 figures, accepted in J. Phys.: Condens. Matte

    Interface states in two-dimensional electron systems with spin-orbital interaction

    Full text link
    Interface states at a boundary between regions with different spin-orbit interactions (SOIs) in two-dimensional (2D) electron systems are investigated within the one-band effective mass method with generalized boundary conditions for envelope functions. We have found that the interface states unexpectedly exist even if the effective interface potential equals zero. Depending on the system parameters, the energy of these states can lie in either or both forbidden and conduction bands of bulk states. The interface states have chiral spin texture similar to that of the edge states in 2D topological insulators. However, their energy spectrum is more sensitive to the interfacial potential, the largest effect being produced by the spin-dependent component of the interfacial potential. We have also studied the size quantization of the interface states in a strip of 2D electron gas with SOI and found an unusual (non-monotonic) dependence of the quantization energy on the strip width.Comment: 16 pages, 6 figures. arXiv admin note: text overlap with arXiv:1011.368

    Electronic states induced by nonmagnetic defects in two-dimensional topological insulators

    Full text link
    We study in-gap electronic states induced by a nonmagnetic defect with short-range potential in two-dimensional topological insulators and trace their evolution as the distance between the defect and the boundary changes. The defect located far from the boundary is found to produce two bound states independently of the sign of its potential. The states are classified as electronlike and holelike. Each of these states can have two types of the spatial distribution of the electron density. The first-type states have a maximum of the density in the center and the second-type ones have a minimum. When the defect is coupled with the boundary, the bound states are transformed correspondingly into resonances of two types and take up the form of the edge states flowing around the defect. Under certain conditions, two resonances interfere giving rise to the formation of a bound state embedded into the continuum spectrum of the edge states flowing around the defect. We calculate the spatial distribution of the electron density in the edge states flowing around the defect and estimate the charge accumulated near the defect. The current density field of the edge states flowing around the defect contains two components one of which flows around the defect and the other circulates around it.Comment: 11 pages, 7 figure
    corecore