407 research outputs found

    Low Saturation Intensities in Two-Photon Ultracold Collisions

    Get PDF
    We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding

    Spectroscopy of Atoms Confined to the Single Node of a Standing Wave in a Parallel-Plate Cavity

    Get PDF
    We have performed spectroscopy on sodium atoms that are optically channeled in the single node of a laser standing wave set up across a parallel-plate cavity. Using this technique we have extended our previous measurement of the Lennard-Jones van der Waals energy-level shift [Sandoghdar et al., Phys. Rev. Lett. 68, 3432 (1992)] down to a cavity width of ~500 nm. We discuss the applications of this technique to the precise measurement of atom-surface distances

    Direct Measurement of the Van Der Waals Interaction Between an Atom and Its Images in a Micron-Sized Cavity

    Get PDF
    The authors have measured by laser spectroscopy the energy of interaction between a sodium atom and its images in the walls of a micron-sized cavity. This cavity-QED study is the first direct quantitative test of the Lennard-Jones van der Waals interaction as a function of controlled atom-surface separation and mean-square electric dipole moment

    Measurements of Population Densities of Metastable and Resonant Levels of Argon Using Laser Induced Fluorescence

    Get PDF
    We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. We also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE111 mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge

    Ionization of Rydberg Wave Packets by Subpicosecond, Half-Cycle Electromagnetic Pulses

    Get PDF
    We have studied the ionization of Rydberg wave packets by subpicosecond, nearly unipolar electromagnetic field pulses, in the regime where the duration of the electric field is less than the classical Kepler orbit time 2n3 for the wave packet. In contrast to the subpicosecond optical pulses, subpicosecond field pulses can ionize wave packets when the probability density near the inner turning point of the Kepler orbit is low. The transfer of energy from the electromagnetic field to essentially free electrons demonstrates that the pulses are substantially shorter than one field cycle. Such half-cycle pulses can track the wave packet throughout its orbit, in order to study wave packet trajectories or other processes at the quantum-classical boundary

    Correlation between Ferromagnetic Layer Easy Axis and the Tilt Angle of Self Assembled Chiral Molecules

    Get PDF
    The spin-spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates

    Spectral Dependence of Coherent Backscattering of Light in a Narrow-Resonance Atomic System

    Get PDF
    We report a combined theoretical and experimental study of the spectral and polarization dependence of near resonant radiation coherently backscattered from an ultracold gas of 85Rb atoms. Measurements in an approximately 6 MHz range about the 5s^{2}S_{1/2}- 5p^{2}P_{3/2}, F=3 - F'=4 hyperfine transition are compared with simulations based on a realistic model of the experimental atomic density distribution. In the simulations, the influence of heating of the atoms in the vapor, magnetization of the vapor, finite spectral bandwidth, and other nonresonant hyperfine transitions are considered. Good agreement is found between the simulations and measurements.Comment: 10 pages, 12 figur

    Protein folding and quinary interactions: creating cellular organisation through functional disorder

    Get PDF
    The marginal stability of globular proteins in the cell is determined by the balance between excluded volume effect and soft interactions. Quinary interactions are a type of soft interactions involved in intracellular organisation and known to have stabilising or destabilising effects on globular proteins. Recent studies suggest that globular proteins have structural flexibility, exhibiting more than one functional state. Here, we propose that the quinary-induced destabilisation can be sufficient to produce functional partially unfolded states of globular proteins. The biological relevance of this mechanism is explored, involving intracellular phase separation and regulatory stress response mechanisms.The authors thank Hernani Geros for useful comments on the manuscript and Michael Smith for language advices. In addition, JCM and SR acknowledge the Foundation for Science and Technology, FCT- Portugal, for financial support through the Centre of Chemistry of the University of Minho (CQ-UM) (projects UID/QUI/00686/2013 and UID/QUI/00686/2016). SE acknowledges funding from the Cluster of Excellence RESOLV (EXC 1069) funded by the German Research Foundation (DFG) and the Human Frontier Science Program Organization Research Grant (Project: RGP0022/2017)

    Measurement of the Casimir-Polder Force

    Get PDF
    The authors have studied the deflection of ground-state sodium atoms passing through a micron-sized parallel-plate cavity by measuring the intensity of a sodium atomic beam transmitted through the cavity as a function of cavity plate separation. This experiment provides clear evidence for the existence of the Casimir-Polder force, which is due to modification of the ground-state Lamb shift in the confined space of a cavity. The results confirm the magnitude of the force and the distance dependence predicted by quantum electrodynamics
    corecore