301 research outputs found
Catalysis of Organic Reactions. Part I: Enhancement of a Solid State Reaction by Proper Orientation within a Crystal. Part II. Micellar Effects on the Stereochemistry and Rate of Aqueous Solvolysis Reactions
Part I. The solid state rearrangement of methyl-p-dimethylaminobenzenesulfonate
to the trimethylammoniumbenzenesulfonate zwitterion was studied
by a combination of spectroscopic techniques. NMR, Field Desorption
Mass Spectrometry, and X-Ray Crystallography were employed to determine
the mechanism of this reaction. It was shown to be an intermolecular
nucleophilic displacement whose rate is greatly enhanced by the
crystallinity of the starting material.
Part II. A study of the effects of micelles on the aqueous solvolysis
of alkyl-p-trimethylammoniumbenzenesulfonates revealed that anionic
micelles could change the rate and stereochemistry of the solvolysis
reaction. The mechanism for the observed rate retardation and induced
decrease in stereochemical integrity was probed and a unified mechanistic
hypothesis is presented.</p
The synthesis, characterization and thermal chemistry of modified norbornenyl PMR endcaps
As part of a program to further the understanding of the polymerization of Nadic-Endcapped PMR systems, a series of model Norbornenyl-Imides has been synthesized and their thermal behavior explored. Their syntheses and characterizations as well as their rearrangement and polymerization chemistry are described. Monomer isomerization at temperatures as low as 125 C and oligomer formation at somewhat higher temperatures are observed. Approximate relative rates for competing isomerization pathways are established and some information is obtained about the details of oligomer formation. The relationship of this data to current PMR systems is briefly discussed
Focusing Vacuum Fluctuations II
The quantization of the scalar and electromagnetic fields in the presence of
a parabolic mirror is further developed in the context of a geometric optics
approximation. We extend results in a previous paper to more general
geometries, and also correct an error in one section of that paper. We
calculate the mean squared scalar and electric fields near the focal line of a
parabolic cylindrical mirror. These quantities are found to grow as inverse
powers of the distance from the focus. We give a combination of analytic and
numerical results for the mean squared fields. In particular, we find that the
mean squared electric field can be either negative or positive, depending upon
the choice of parameters. The case of a negative mean squared electric field
corresponds to a repulsive Van der Waals force on an atom near the focus, and
to a region of negative energy density. Similarly, a positive value corresponds
to an attractive force and a possibility of atom trapping in the vicinity of
the focus.Comment: 26 pages, 15 figures; additional discussion added in Sects. IV and I
Recommended from our members
The Central Timna Valley Project: 5 Years of Ongoing Textile Research
In its initial five years of activity the Central Timna Valley Project has dedicated its efforts to the excavation of several Late Bronze and Iron Age sites (13th-9th centuries BC) in the southern Arabah Valley of Israel (fig. 1).1 The project, headed by Erez Ben-Yosef of Tel Aviv University, explores the ancient exploitation of copper ores at Timna; these were utilised for the production of copper ingots that were traded throughout the southern Levant and possibly the greater Mediterranean region. It is within the strata of several newly excavated sites that a few hundred individual textile, cordage and rope fragments were uncovered
Correlation between Ferromagnetic Layer Easy Axis and the Tilt Angle of Self Assembled Chiral Molecules
The spin-spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates
Spectral Dependence of Coherent Backscattering of Light in a Narrow-Resonance Atomic System
We report a combined theoretical and experimental study of the spectral and
polarization dependence of near resonant radiation coherently backscattered
from an ultracold gas of 85Rb atoms. Measurements in an approximately 6 MHz
range about the 5s^{2}S_{1/2}- 5p^{2}P_{3/2}, F=3 - F'=4 hyperfine transition
are compared with simulations based on a realistic model of the experimental
atomic density distribution. In the simulations, the influence of heating of
the atoms in the vapor, magnetization of the vapor, finite spectral bandwidth,
and other nonresonant hyperfine transitions are considered. Good agreement is
found between the simulations and measurements.Comment: 10 pages, 12 figur
The Languages Spoken in the Water Body (or the Biological Role of Cyanobacterial Toxins)
Although intensification of toxic cyanobacterial blooms over the last decade is a matter of growing concern due to bloom impact on water quality, the biological role of most of the toxins produced is not known. In this critical review we focus primarily on the biological role of two toxins, microcystins and cylindrospermopsin, in inter- and intra-species communication and in nutrient acquisition. We examine the experimental evidence supporting some of the dogmas in the field and raise several open questions to be dealt with in future research. We do not discuss the health and environmental implications of toxin presence in the water body
Focusing Vacuum Fluctuations
The focusing of the vacuum modes of a quantized field by a parabolic mirror
is investigated. We use a geometric optics approximation to calculate the
energy density and mean squared field averages for scalar and electromagnetic
fields near the focus. We find that these quantities grow as an inverse power
of the distance to the focus. There is an attractive Casimir-Polder force on an
atom which will draw it into the focus. Some estimates of the magnitude of the
effects of this focusing indicate that it may be observable.Comment: 20 pages, 4 figures; typos corrected, two refs and some comments
adde
Matter-field theory of the Casimir force
A matter-field theory of the Casimir force is formulated in which the
electromagnetic field and collective modes of dielectric media are treated on
an equal footing. In our theory, the Casimir force is attributed to zero-point
energies of the combined matter-field modes. We analyze why some of the
existing theories favor the interpretation of the Casimir force as originating
from zero-point energies of the electromagnetic field and others from those of
the matter.Comment: 12pages, 1 Postscript figur
- …