17 research outputs found

    Nonadditivity of Faradaic currents and modification of capacitance currents in the voltammetry of mixtures of ferrocene and the cobaltocenium cation in protic and aprotic ionic liquids

    Full text link
    Unexpected nonadditivity of currents encountered in the electrochemistry of mixtures of ferrocene (Fc) and cobaltocenium cation (Cc+) as the PF6 - salt has been investigated by direct current (dc) and Fourier-transformed alternating current (ac) cyclic voltammetry in two aprotic (1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate) and three protic (triethylammonium formate, bis(2-hydroxyethyl)ammonium acetate, and triethylammonium acetate) ionic liquids (ILs). The voltammetry of the individual Fc0/+ and Cc+/0 couples always exhibits near-Nernstian behavior at glassy carbon and gold electrodes. As expected for an ideal process, the reversible formal potentials and diffusion coefficients at 23 ( 1 &deg;C in each IL determined from measurement on individual Fc and Cc+ solutions were found to be independent of electrode material, concentration, and technique used for the measurement. However, when Fc and Cc+ were simultaneously present, the dc and ac peak currents per unit concentration for the Fc0/+ and Cc+/0 processes were found to be significantly enhanced in both aprotic and protic ILs. Thus, the apparent diffusion coefficient values calculated for Fc and Cc+ were respectively found to be about 25 and 35% larger than those determined individually in the aprotic ILs. A similar change in the Fc0/+ mass transport characteristics was observed upon addition of tetrabutylammonium hexafluorophosphate (Bu4NPF6), and the double layer capacitance also varied in distinctly different ways when Fc and Cc+ were present individually or in mixtures. Importantly, the nonadditivity of Faradaic current is not associated with a change in viscosity or from electron exchange as found when some solutes are added to ILs. The observation that the 1H NMR T1 relaxation times for the proton resonance in Cc+ also are modified in mixed systems implies that specific interaction with aggregates of the constituent IL ionic species giving rise to subtle structural changes plays an important role in modifying the mass transport, double layer characteristics, and dynamics when solutes of interest in this study are added to ILs. Analogous voltammetric changes were not observed in studies in organic solvent media containing 0.1 M added supporting electrolyte. Implications of the nonadditivity of Faradaic and capacitance terms in ILs are considered.<br /

    Nonadditivity of faradaic currents and modification of double layer capacitance in the voltammetry of mixtures of ferrocene and ferrocenium salts in ionic liquids

    Full text link
    Electrochemical studies on the Fc + e&minus; Fc+ (Fc = ferrocene) process have been undertaken via the oxidation of Fc and reduction of Fc+ as the hexafluorophosphate (PF6&minus;) or tetrafluoroborate (BF4&minus;) salts and their mixtures in three ionic liquids (ILs) (1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-butyl-3-methylimidazolium hexafluorophosphate). Data obtained at macro- and microdisk electrodes using conventional dc and Fourier-transformed large-amplitude ac (FT-ac) voltammetry reveal that diffusion coefficients for Fc and Fc+ differ significantly and are a function of the Fc and Fc+ concentration, in contrast to findings in molecular solvents with 0.1 M added supporting electrolyte media. Thus, the Faradaic currents associated with the oxidation of Fc (Fc0/+) and reduction of FcPF6 or FcBF4 (Fc+/0) when both Fc and Fc+ are simultaneously present in the ILs differ from values obtained when individual Fc and Fc+ solutions are used. The voltammetry for both the Fc0/+ and Fc+/0 processes exhibited near-Nernstian behavior at a glassy carbon macrodisk electrode and a platinum microdisk electrode, when each process was studied individually in the ILs. As expected, the reversible formal potentials (E&deg;&prime;) and diffusion coefficients (D) at 23 &plusmn; 1 &deg;C were independent of the electrode material and concentration. However, when Fc and FcPF6 or FcBF4 were both present, alterations to the mass transport process occurred and apparent D values calculated for Fc and Fc+ were found to be about 25&minus;39% and 32&minus;42% larger, respectively, than those determined from individual solutions. The apparent value of the double layer capacitance determined by FT-ac voltammetry from individual and mixed Fc and Fc+ conditions at the GC electrode was also a function of concentration. Double layer capacitance values increased significantly with the concentration of Fc and FcPF6 or FcBF4 when species were studied individually or simultaneously, but had a larger magnitude under conditions where both species were present. Variation in the structure of the ILs and hence mobilities of the ionic species, when Fc and FcPF6 or FcBF4 are simultaneously present, is considered to be the origin of the nonadditivity of the Faradaic currents and variation in capacitance.<br /

    Electrochemistry of room temperature protic ionic liquids

    Full text link
    Eighteen protic ionic liquids containing different combinations of cations and anions, hydrophobicity, viscosity, and conductivity have been synthesized and their physicochemical properties determined. In one series, the diethanolammonium cations were combined with acetate, formate, hydrogen sulfate, chloride, sulfamate, and mesylate anions. In the second series, acetate and formate anions were combined with amine bases, triethylamine, diethylamine, triethanolamine, di-n-propylamine, and di-n-butylamine. The electrochemical characteristics of the eight protic ionic liquids that are liquid at room temperature (RTPILs) have been determined using cyclic, microelectrode, and rotating disk electrode voltammetries. Potential windows of the RTPILs have been compared at glassy carbon, platinum, gold, and boron-doped diamond electrodes and generally found to be the largest in the case of glassy carbon. The voltammetry of IUPAC recommended potential scale reference systems, ferrocene/ferrocenium and cobaltocenium/cobaltocene, have been evaluated and found to be ideal in the case of the less viscous RTPILs but involve adsorption in the highly viscous ones. Other properties such as diffusion coefficients, ionic conductivity, and double layer capacitance also have been measured. The influence of water on the potential windows, viscosity, and diffusion has been studied systematically by deliberate addition of water to the dried ionic liquids. The survey highlights the problems with voltammetric studies in highly viscous room temperature protic ionic liquids and also suggests the way forward with respect to their possible industrial use.<br /
    corecore