140 research outputs found

    Effect of spectral modification of ρ\rho on shear viscosity of a pion gas

    Full text link
    We evaluate the shear viscosity of a pion gas in the relativistic kinetic theory approach. The in-medium propagator of the ρ\rho meson at finite temperature is used to evaluate the ππ\pi-\pi scattering amplitude in the medium. The real and imaginary parts of the self-energy calculated from one-loop diagrams are seen to have noticeable effects on the scattering cross-section. The consequences on temperature dependence of the shear viscosity evaluated in the Chapman-Enskog and relaxation time approximations are studied

    The LcrG tip chaperone protein of the Yersinia pestis type III secretion system is partially folded

    Get PDF
    The type III secretion system (T3SS) is essential in the pathogenesis of Yersinia pestis, the causative agent of plague. A small protein, LcrG, functions as a chaperone to the tip protein LcrV, and the LcrG-LcrV interaction is important in regulating protein secretion through the T3SS. The atomic structure of the LcrG family is currently unknown. However, because of its predicted helical propensity, many have suggested that the LcrG family forms a coiled-coil structure. Here, we show by NMR and CD spectroscopy that LcrG lacks a tertiary structure and it consists of three partially folded alpha helices spanning residues 7-38, 41-46, and 58-73. NMR titrations of LcrG with LcrV show that the entire length of a truncated LcrG (residues 7-73) is involved in binding to LcrV. However, there is regional variation in how LcrG binds to LcrV. The C-terminal region of a truncated LcrG (residues 52-73) shows tight-binding interaction with LcrV while the N-terminal region (residues 7-51) shows weaker interaction with LcrV. This suggests there are at least two binding events when LcrG binds to LcrV. Biological assays and mutagenesis indicate that the C-terminal region of LcrG (residues 52-73) is important in blocking protein secretion through the T3SS. Our results reveal structural and mechanistic insights into the atomic conformation of LcrG and how it binds to LcrV

    Structure and Biophysics of Type III Secretion in Bacteria

    Get PDF
    Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which consists of a membrane-embedded basal structure, an external needle that protrudes from the bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is assembled between the needle tip complex and the host cell, serving as a gateway for translocation of effector proteins by creating a pore in the host cell membrane. Following delivery into the host cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally, chaperones serve as regulators of secretion by sequestering effectors and some structural proteins within the bacterial cytoplasm. This review will focus on the latest developments and future challenges concerning the structure and biophysics of the needle apparatus

    NMR characterization of the Type III Secretion System Tip Chaperone Protein PcrG of Pseudomonas aeruginosa

    Get PDF
    Lung infection with Pseudomonas aeruginosa is the leading cause of death among cystic fibrosis patients. To initiate infection, P. aeruginosa assembles a protein nanomachine, the type III secretion system (T3SS) to inject bacterial proteins directly into target host cells. An important regulator of the P. aeruginosa T3SS is the chaperone protein PcrG, which forms a complex with the tip protein, PcrV. In addition to its role as a chaperone to the tip protein, PcrG also regulates protein secretion. PcrG homologs are also important in the T3SS of other pathogens such as Yersinia pestis, the causative agent of bubonic plague. The atomic structure of PcrG or any member of the family of tip protein chaperones is currently unknown. Here, we show by CD and NMR spectroscopy that PcrG lacks a tertiary structure. However, it is not completely disordered but contains secondary structures dominated by two long α-helices from residues 16–41 and 55–76. NMR backbone dynamics data show that the helices in PcrG have semi-rigid flexibility and they tumble as a single entity with similar backbone dynamics. NMR titrations show that the entire length of PcrG residues from 9–76 is involved in binding to PcrV. Thus the PcrG family of T3SS chaperone proteins is essentially partially folded

    Structure of the Yersinia pestis tip protein LcrV refined to 1.65 A resolution

    Get PDF
    This is the publisher's version, also available electronically from http://scripts.iucr.org/cgi-bin/paper?S1744309113008579.The human pathogen Yersinia pestis requires the assembly of the type III secretion system (T3SS) for virulence. The structural component of the T3SS contains an external needle and a tip complex, which is formed by LcrV in Y. pestis. The structure of an LcrV triple mutant (K40A/D41A/K42A) in a C273S background has previously been reported to 2.2 Å resolution. Here, the crystal structure of LcrV without the triple mutation in a C273S background is reported at a higher resolution of 1.65 Å. Overall the two structures are similar, but there are also notable differences, particularly near the site of the triple mutation. The refined structure revealed a slight shift in the backbone positions of residues Gly28-Asn43 and displayed electron density in the loop region consisting of residues Ile46-Val63, which was disordered in the original structure. In addition, the helical turn region spanning residues Tyr77-Gln95 adopts a different orientation

    Tick Histamine Release Factor Is Critical for Ixodes scapularis Engorgement and Transmission of the Lyme Disease Agent

    Get PDF
    Ticks are distributed worldwide and affect human and animal health by transmitting diverse infectious agents. Effective vaccines against most tick-borne pathogens are not currently available. In this study, we characterized a tick histamine release factor (tHRF) from Ixodes scapularis and addressed the vaccine potential of this antigen in the context of tick engorgement and B. burgdorferi transmission. Results from western blotting and quantitative Reverse Transcription-PCR showed that tHRF is secreted in tick saliva, and upregulated in Borrelia burgdorferi-infected ticks. Further, the expression of tHRF was coincident with the rapid feeding phase of the tick, suggesting a role for tHRF in tick engorgement and concomitantly, for efficient B. burgdorferi transmission. Silencing tHRF by RNA interference (RNAi) significantly impaired tick feeding and decreased B. burgdorferi burden in mice. Interfering with tHRF by actively immunizing mice with recombinant tHRF, or passively transferring tHRF antiserum, also markedly reduced the efficiency of tick feeding and B. burgdorferi burden in mice. Recombinant tHRF was able to bind to host basophils and stimulate histamine release. Therefore, we speculate that tHRF might function in vivo to modulate vascular permeability and increase blood flow to the tick bite-site, facilitating tick engorgement. These findings suggest that blocking tHRF might offer a viable strategy to complement ongoing efforts to develop vaccines to block tick feeding and transmission of tick-borne pathogens

    Molecular Interactions that Enable Movement of the Lyme Disease Agent from the Tick Gut into the Hemolymph

    Get PDF
    Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted to humans by bite of Ixodes scapularis ticks. The mechanisms by which the bacterium is transmitted from vector to host are poorly understood. In this study, we show that the F(ab)2 fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the migration of the spirochete from tick gut into the hemolymph during tick feeding. The decreased hemolymph infection results in lower salivary glands infection, and consequently attenuates mouse infection by tick-transmitted B. burgdorferi. Using a yeast surface display approach, a tick gut protein named TRE31 was identified to interact with BBE31. Silencing tre31 also decreased the B. burgdorferi burden in the tick hemolymph. Delineating the specific spirochete and arthropod ligands required for B. burgdorferi movement in the tick may lead to new strategies to interrupt the life cycle of the Lyme disease agent
    corecore