12 research outputs found

    A Cds1-Mediated Checkpoint Protects the MBF Activator Rep2 from Ubiquitination by Anaphase-Promoting Complex/Cyclosome-Ste9 at S-Phase Arrest in Fission Yeast▿ †

    No full text
    Transcription of the MluI cell cycle box (MCB) motif-containing genes at G1 phase is regulated by the MCB-binding factors (MBF) (also called DSC1) in Schizosaccharomyces pombe. Upon S-phase arrest, the MBF transcriptional activity is induced through the accumulation of the MBF activator Rep2. In this study, we show that the turnover of Rep2 is attributable to ubiquitin-mediated proteolysis. Levels of Rep2 oscillate during the cell cycle, with a peak at G1 phase, coincident with the MBF activity. Furthermore, we show that Rep2 ubiquitination requires the function of the E3 ligase anaphase-promoting complex/cyclosome (APC/C). Ste9 can be phosphorylated by the checkpoint kinase Cds1 in vitro, and its inhibition/phosphorylation at S-phase arrest is dependent on the function of Cds1. Our data indicate that the Cds1-dependent stabilization of Rep2 is achieved through the inhibition/phosphorylation of APC/C-Ste9 at the onset of S-phase arrest. Stabilization of Rep2 is important for stimulating transcription of the MBF-dependent genes to ensure a sufficient supply of proteins essential for cell recovery from S-phase arrest. We propose that oscillation of Rep2 plays a role in regulation of periodic transcription of the MBF-dependent genes during cell cycle progression

    Predictive Factors for BRCA1 and BRCA2 Genetic Testing in an Asian Clinic-Based Population.

    No full text
    The National Comprehensive Cancer Network (NCCN) has proposed guidelines for the genetic testing of the BRCA1 and BRCA2 genes, based on studies in western populations. This current study assessed potential predictive factors for BRCA mutation probability, in an Asian population.A total of 359 breast cancer patients, who presented with either a family history (FH) of breast and/or ovarian cancer or early onset breast cancer, were accrued at the National Cancer Center Singapore (NCCS). The relationships between clinico-pathological features and mutational status were calculated using the Chi-squared test and binary logistic regression analysis.Of 359 patients, 45 (12.5%) had deleterious or damaging missense mutations in BRCA1 and/or BRCA2. BRCA1 mutations were more likely to be found in ER-negative than ER-positive breast cancer patients (P=0.01). Moreover, ER-negative patients with BRCA mutations were diagnosed at an earlier age (40 vs. 48 years, P=0.008). Similarly, triple-negative breast cancer (TNBC) patients were more likely to have BRCA1 mutations (P=0.001) and that these patients were diagnosed at a relatively younger age than non-TNBC patients (38 vs. 46 years, P=0.028). Our analysis has confirmed that ER-negative status, TNBC status and a FH of hereditary breast and ovarian cancer (HBOC) are strong factors predicting the likelihood of having BRCA mutations.Our study provides evidence that TNBC or ER-negative patients may benefit from BRCA genetic testing, particularly younger patients (<40 years) or those with a strong FH of HBOC, in Asian patients

    Microfluidic device for automated NGS library preparation.

    No full text
    <p>(a) Automated multi-column device mounted on a plastic carrier that provides wells for loading samples and reagents and for pressurized operation of the device. The wells used to load reagents for NGS library preparation are labeled. Chromatography columns for the selective binding and release of DNA were formed either with ChargeSwitch beads or with carboxylated beads. Reagents that were used exclusively with the carboxylated beads are labeled in green. (b) Schematic of single reactor unit for reaction mixing and DNA purification. The regions denoted in the reaction circuit are as follows: Green, Sample; Orange, Buffer; Blue, Enzyme. Red solid rectangular boxes represent activated valves that partition the individual circuits. (c) Parallelization of 16 reactors on chip for preparation of up to 16 independent libraries. Layout of the entire device without the valve map showing reagent inlets and the design for multiplex library generation. The serpentine metering channel designed to ensure reliable column packing is highlighted in orange. (d) Schematics showing cross-sections of purification columns loaded with either 1) ChargeSwitch beads, which are held in place with a frit layer and a cap layer formed by larger beads, or 2) carboxylated beads.</p

    Coverage depth from a sequencing run using an Illumina U-2 OS osteosarcoma cell line library prepared on the AMCC chip.

    No full text
    <p>The library was run on the MiSeq using the 2x150 bp paired-end sequencing protocol. (a) Distribution of sequencing reads across the reference human genome, which has been divided into 1 million bins to assess coverage uniformity. (b) Average coverage across different chromosomes. (c) Average sequencing depth across different chromosomes. The Y chromosome is absent from the U-2 OS osteosarcoma cell line.</p

    Genomic and epigenomic <i>EBF1</i> alterations modulate<i> TERT</i> expression in gastric cancer

    No full text
    Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1
    corecore