81 research outputs found

    Land surface Verification Toolkit (LVT)

    Get PDF
    LVT is a framework developed to provide an automated, consolidated environment for systematic land surface model evaluation Includes support for a range of in-situ, remote-sensing and other model and reanalysis products. Supports the analysis of outputs from various LIS subsystems, including LIS-DA, LIS-OPT, LIS-UE. Note: The Land Information System Verification Toolkit (LVT) is a NASA software tool designed to enable the evaluation, analysis and comparison of outputs generated by the Land Information System (LIS). The LVT software is released under the terms and conditions of the NASA Open Source Agreement (NOSA) Version 1.1 or later. Land Information System Verification Toolkit (LVT) NOSA

    Development of Global Operational Snow Analysis at the US Air Force 557th Weather Wing

    Get PDF
    The outdated SNODEP snow depth retrieval algorithm is replaced by the Foster et al. (1997; 2005) approach, which considers the effects of variations in forest cover. The simple blending algorithm (IDW) is replaced by the Bratseth scheme, a successive correction algorithm that converges to the solution provided by Optimal Interpolation (OI). Outdated quality control datasets are updated and quality control algorithms are reorganized to ensure the performance of the snow analysis. The spatial resolution of snow and ice estimates are increased from 25-km to 10-km.USAF-SI are fully integrated into the global operational land analysis configuration at the USAF 557th WW

    Assimilation of airborne gamma observations provides utility for snow estimation in forested environments

    Get PDF
    An airborne gamma-ray remote sensing technique provides a strong potential to estimate reliable snow water equivalent (SWE) in forested environments where typical remote sensing techniques have large uncertainties. This study explores the utility of assimilating the temporally (up to four measurements during a winter period) and spatially sparse airborne gamma SWE observations into a land surface model to improve SWE estimates in forested areas in the northeastern U.S. Here, we demonstrate that the airborne gamma SWE observations add value to the SWE estimates from the Noah land surface model with multiple parameterization options (Noah-MP) via assimilation despite the limited number of the measurements. Improvements are witnessed during the snow accumulation period while reduced skills are seen during the snow melting period. The efficacy of the gamma data is greater for areas with lower vegetation cover fraction and topographic heterogeneity ranges, and it is still effective in reducing the SWE estimation errors for areas with higher topographic heterogeneity. The gamma SWE data assimilation (DA) also shows a potential of extending the impact of flight line-based measurements to adjacent areas without observations by employing a localization approach. The localized DA reduces the modeled SWE estimation errors for adjacent grid cells up to 32-km distances from the flight lines. The enhanced performance of the gamma SWE DA is evident when the results are compared to those from assimilating the existing satellite-based SWE retrievals from the Advanced Microwave Scanning Radiometer 2 (AMSR2) for the same locations and time periods. Although there is still room for improvement, particularly for the melting period, this study shows that the gamma SWE DA is a promising method to improve the SWE estimates in forested areas.</p

    Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    Get PDF
    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities

    A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    Get PDF
    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using traditional verification methodologies. Output from object-based verification within NCAR s Meteorological Evaluation Tools reveals that the WRF runs initialized with LIS+MODIS data consistently generated precipitation objects that better matched observed precipitation objects, especially at higher precipitation intensities. The LIS+MODIS runs produced on average a 4% increase in matched precipitation areas and a simultaneous 4% decrease in unmatched areas during three months of daily simulations

    Comparison of Four Precipitation Forcing Datasets in Land Information System Simulations over the Continental U.S.

    Get PDF
    This paper and poster presented a description of the current real-time SPoRT-LIS run over the southeastern CONUS to provide high-resolution, land surface initialization grids for local numerical model forecasts at NWS forecast offices. The LIS hourly output also offers a supplemental dataset to aid in situational awareness for convective initiation forecasts, assessing flood potential, and monitoring drought at fine scales. It is a goal of SPoRT and several NWS forecast offices to expand the LIS to an entire CONUS domain, so that LIS output can be utilized by NWS Western Region offices, among others. To make this expansion cleanly so as to provide high-quality land surface output, SPoRT tested new precipitation datasets in LIS as an alternative forcing dataset to the current radar+gauge Stage IV product. Similar to the Stage IV product, the NMQ product showed comparable patterns of precipitation and soil moisture distribution, but suffered from radar gaps in the intermountain West, and incorrectly set values to zero instead of missing in the data-void regions of Mexico and Canada. The other dataset tested was the next-generation GOES-R QPE algorithm, which experienced a high bias in both coverage and intensity of accumulated precipitation relative to the control (NLDAS2), Stage IV, and NMQ simulations. The resulting root zone soil moisture was substantially higher in most areas

    A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting

    Get PDF
    The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and show sample output from summer 2010, compare the MODIS GVF data to the AVHRR monthly climatology, and illustrate the sensitivity of the Noah LSM within LIS and/or the coupled LIS/WRF system to the new MODIS GVF dataset

    Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Get PDF
    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). Portions of the Northern Plains states experienced substantial increases in convective available potential energy as a result of the higher SPoRT/MODIS GVFs. These differences produced subtle yet quantifiable differences in the simulated convective precipitation systems for this event

    P69 Using the NASA-Unified WRF to Assess the Impacts of Real-Time Vegetation on Simulations of Severe Weather

    Get PDF
    Since June 2010, the NASA Short-term Prediction Research and Transition (SPoRT; Goodman et al. 2004; Darden et al. 2010; Stano et al. 2012; Fuell et al. 2012) Center has been generating a real-time Normalized Difference Vegetation Index (NDVI) and corresponding Green Vegetation Fraction (GVF) composite based on reflectances from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. This dataset is generated at 0.01 resolution across the Continental United States (CONUS), and updated daily. The goal of producing such a vegetation dataset is to improve over the default climatological GVF dataset in land surface and numerical weather prediction models, in order to have better simulations of heat and moisture exchange between the land surface and the planetary boundary layer. Details on the SPoRT/MODIS vegetation composite algorithm are presented in Case et al. (2011). Vegetation indices such as GVF and Leaf Area Index (LAI) are used by land surface models (LSMs) to represent the horizontal and vertical density of plant vegetation (Gutman and Ignatov 1998), in order to calculate transpiration, interception and radiative shading. Both of these indices are related to the NDVI; however, there is an inherent ambiguity in determining GVF and LAI simultaneously from NDVI, as described in Gutman and Ignatov (1998). One practice is to specify the LAI while allowing the GVF to vary both spatially and temporally, as is done in the Noah LSM (Chen and Dudhia 2001; Ek et al. 2003). Operational versions of Noah within several of the National Centers for Environmental Prediction (NCEP) global and regional modeling systems hold the LAI fixed, while the GVF varies according to a global monthly climatology. This GVF climatology was derived from NDVI data on the NOAA Advanced Very High Resolution Radiometer (AVHRR) polar orbiting satellite, using information from 1985 to 1991 (Gutman and Ignatov 1998; Jiang et al. 2010). Representing data at the mid-point of every month, the climatological dataset is on a grid with 0.144 (~16 km) spatial resolution and is distributed with the community WRF model (Ek et al. 2003; Jiang et al. 2010; Skamarock et al. 2008)
    corecore