5 research outputs found

    Vimentin Is a Novel Anti-Cancer Therapeutic Target; Insights from In Vitro and In Vivo Mice Xenograft Studies

    Get PDF
    BACKGROUND:Vimentin is a ubiquitous mesenchymal intermediate filament supporting mechano-structural integrity of quiescent cells while participating in adhesion, migration, survival, and cell signaling processes via dynamic assembly/disassembly in activated cells. Soft tissue sarcomas and some epithelial cancers exhibiting "epithelial to mesenchymal transition" phenotypes express vimentin. Withaferin-A, a naturally derived bioactive compound, may molecularly target vimentin, so we sought to evaluate its effects on tumor growth in vitro and in vivo thereby elucidating the role of vimentin in drug-induced responses. METHODS AND FINDINGS:Withaferin-A elicited marked apoptosis and vimentin cleavage in vimentin-expressing tumor cells but significantly less in normal mesenchymal cells. This proapoptotic response was abrogated after vimentin knockdown or by blockade of caspase-induced vimentin degradation via caspase inhibitors or overexpression of mutated caspase-resistant vimentin. Pronounced anti-angiogenic effects of Withaferin-A were demonstrated, with only minimal effects seen in non-proliferating endothelial cells. Moreover, Withaferin-A significantly blocked soft tissue sarcoma growth, local recurrence, and metastasis in a panel of soft tissue sarcoma xenograft experiments. Apoptosis, decreased angiogenesis, and vimentin degradation were all seen in Withaferin-A treated specimens. CONCLUSIONS:In light of these findings, evaluation of Withaferin-A, its analogs, or other anti-vimentin therapeutic approaches in soft tissue sarcoma and "epithelial to mesenchymal transition" clinical contexts is warranted

    K1 protein of human herpesvirus 8 suppresses lymphoma cell Fas-mediated apoptosis

    No full text
    Expression of the K1 gene of human herpesvirus 8 activates nuclear factor-κB and induces lymph node hyperplasia and lymphomas in transgenic mice. To further delineate its role in cell survival, we determined whether K1 altered apoptosis of lymphoma cells. K1 protein is expressed in Kaposi sarcoma and primary effusion lymphoma. We retrovirally transfected BJAB lymphoma, THP-1, U937, and Kaposi sarcoma SLK cells to express K1 and a K1 mutant with the deleted immunoreceptor tyrosine-based activation motif (K1m). We challenged cells with an agonistic anti-Fas antibody, Fas ligand, irradiation, and tumor necrosis factor–related apoptosis-inducing ligand. K1 transfectants but not K1m transfectants exhibited reduced levels of apoptosis induced by the anti-Fas antibody but not apoptosis induced by the tumor necrosis factor–related apoptosis-inducing ligand or irradiation. K1 expression resulted in reduced apoptosis rates as shown in several assays. K1 induced a modest reduction in levels of Fas-associated death domain protein, and procaspase 8 recruited to the death-inducing signaling complex. Finally, K1 transfectants cleaved procaspase 8 at significantly lower rates than did K1m transfectants. K1-transfected mice, compared with vector-transfected mice, showed lower death rates after challenge with anti-Fas antibody. K1 may contribute to lymphoma development by stimulating cell survival by selectively blocking Fas-mediated apoptosis

    Activation of Src kinase Lyn by the Kaposi sarcoma–associated herpesvirus K1 protein: implications for lymphomagenesis

    No full text
    The K1 gene of Kaposi sarcoma–associated herpesvirus (KSHV) encodes a transmembrane glycoprotein bearing a functional immunoreceptor tyrosine-based activation motif (ITAM). Previously, we reported that the K1 protein induced plasmablastic lymphomas in K1 transgenic mice, and that these lymphomas showed enhanced Lyn kinase activity. Here, we report that systemic administration of the nuclear factor kappa B (NF-κB) inhibitor Bay 11-7085 or an anti–vascular endothelial growth factor (VEGF) antibody significantly reduced K1 lymphoma growth in nude mice. Furthermore, in KVL-1 cells, a cell line derived from a K1 lymphoma, inhibition of Lyn kinase activity by the Src kinase inhibitor PP2 decreased VEGF induction, NF-κB activity, and the cell proliferation index by 50% to 75%. In contrast, human B-cell lymphoma BJAB cells expressing K1, but not the ITAM sequence–deleted mutant K1, showed a marked increase in Lyn kinase activity with concomitant VEGF induction and NF-κB activation, indicating that ITAM sequences were required for the Lyn kinase–mediated activation of these factors. Our results suggested that K1-mediated constitutive Lyn kinase activation in K1 lymphoma cells is crucial for the production of VEGF and NF-κB activation, both strongly implicated in the development of KSHV-induced lymphoproliferative disorders
    corecore